
NEET 2023 QUESTION PAPER (CODE-F6)

Test Booklet code

This Booklet contains 32 pages, including Rough Page.

Do not open this Test Booklet until you are asked to do so.

Important Instructions:

- The test is of 3 hours 20 minutes duration and the Test Booklet contains 200 multiple-choice questions (four options with a single correct answer) from Physics, Chemistry and Biology (Botany and Zoology). 50 questions in each subject are divided into two Sections (A and B) as per details given below:
 - (a) **Section A** shall consist of **35 (Thirty-five)** Questions in each subject (Question Nos 1 to 35, 51 to 85, 101 to 135 and 151 to 185). All questions are compulsory. (b) **Section B** shall consist of **15 (Fifteen)** questions in each subject (Question Nos 36 to 50,86 to 100, 136 to 150 and 186 to 200). In Section B, a candidate needs to **attempt any 10 (Ten)** questions out of **15 (Fifteen)** in
 - each

 Candidates are advised to read all 15 questions in each subject of Section B before they start attempting the question paper. In the event of a candidate attempting more than ten questions, the first ten questions
- **2.** Each question carries **4** marks. For each correct response, the candidate will get **4** marks. For each incorrect response, one mark will be deducted from the total scores. **The maximum marks are 720.**
- 3. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses on Answer Sheet.
- 4. The CODE for this Booklet is **F6**. Make sure that the CODE printed on the Original Copy of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 5. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- **6.** Use of white fluid for correction is **NOT** permissible on the Answer Sheet.
- 7. Each candidate must show on-demand his her Admit Card to the Invigilator.
- 8. No candidate, without special permission of the centre Superintendent or Invigilator, would leave his/her seat.
- 9. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign (with time) the Attendance Sheet twice. Cases, where a candidate has not signed the Attendance Sheet second time, will be deemed not to have handed over the Answer Sheet and dealt with as an Unfair Means case.
- **10.** Use of Electronic/Manual Calculator is prohibited.

answered by the candidate shall be evaluated.

- 11. The candidates are governed by all Rules and Regu<mark>lations of the</mark> examination with regard to their conduct in the Examination Room/Hall. All cases of unfair means will be dealt with as per the Rules and Regulations of this examination.
- 12. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- **13.** The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.
- **14.** Compensatory time of one hour five minutes will be provided for the examination of three hours and 20 minutes duration, whether such candidate (having a physical limitation to write) uses the facility of Scribe or not.

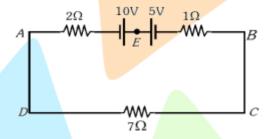
Section -A

- 1. In a series LCR circuit, the inductance L is 10 mH, capacitance C is 1μ F and resistance R is 100Ω . The frequency at which resonance occurs is :-
 - (A) 15.9 kHz
- (B) 1.59 rad/s
- (C) 1. 59 kHz
- (D) 15.9 rad/s

Ans. (3)

Sol.
$$L = 10 \times 10^{-3} H$$

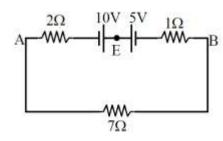
$$C = 1 \times 10^{-6} F$$


$$R = 100 \Omega$$

At resonance $X_L = X_C$

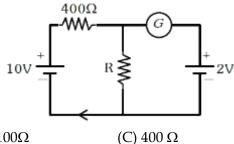
$$= \omega L = \frac{1}{\omega C}$$

$$f = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{10\times10^{-3}\times10^{-6}}} = 1.59KHz$$


2. The magnitude and direction of the current in the following circuit is:-

- (A) 0.5 A from A to B through E
- (B) $\frac{5}{9}$ A from to B through A E
- (C) 1.5 A from B to A through E
- (D) 0.2 A from B to A through E

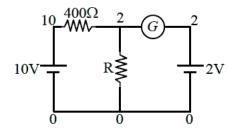
Ans. (A)


Sol.
$$i = \frac{10-5}{10} = \frac{5}{10}A$$

= 0.5 A

from A to B through E.

3. If the galvanometer G does not show any deflection in the circuit shown, the value of R is given by :



- (A) 50Ω
- (B) 100Ω

(D) 200Ω

Ans. (B)

Sol. For no reading galvanometer. Potential across it is same.

$$i_{400\Omega} P \frac{10-2}{400} = \frac{8}{400} = \frac{1}{50} = i_R$$

$$i_R \Rightarrow \frac{V_R}{R} \Rightarrow \frac{2}{R} = \frac{1}{50} \Rightarrow R = 100\Omega$$

- 4. The temperature of a gas is -50°C. To what temperature the gas should be heated so that the rms speed is increased by 3 times?
 - (A) 3295°C
- (B) 3097 K
- (C) 223 K
- (D) 669°C

Ans. (A)

Sol. $v_{rms} \propto \sqrt{T}$

$$\frac{\mathbf{v}_1}{\mathbf{v}_2} = \sqrt{\frac{T_1}{T_2}}$$

- = let initial speed is v
- As speed is increased by 3 times so final speed become 4v

$$\Rightarrow \frac{\mathrm{v}}{4\mathrm{v}} = \sqrt{\frac{223}{\mathrm{T}}}$$

$$T = 3568 \text{ K}$$

So temp. in
$$^{\circ}$$
C = 3568 – 273 = 3295 $^{\circ}$ C

- 5. The ratio of radius of gyration of a solid sphere of mass *M* and radius *R* about its own axis to the radius of gyration of the thin hollow sphere of same mass and radius about its axis is:-
 - (A) 5:3
- (B) 2:5
- (C) 5:2
- (D) 3:5

Ans. (D/BONUS)

Sol. Radius of gyration $K = \sqrt{\frac{I}{m}}$

$$\frac{k_{\text{solid sphere}}}{k_{\text{hollow sphere}}} = \sqrt{\frac{2mR^2 / 5m}{2mR^2 / 3m}} = \sqrt{3} : \sqrt{5}$$

- **6.** A Carnot engine has an efficiency of 50% when its source is at a temperature 327° C. The temperature of the sink is:-
 - (A) 15°C
- (B) 100°C
- (C) 200°C
- (D) 27°C

- Ans. (D)
- **Sol.** Efficiency of carnot engine

$$\%\eta = \left(1 - \frac{T_{\text{sink}}}{T_{\text{source}}}\right) \times 100$$

$$T_{\text{source}} = 327^{\circ} \text{C} = 600 \text{ K}$$

$$50 = \left(1 - \frac{T_{sink}}{600}\right) \times 100$$

$$\frac{1}{2} = 1 - \frac{T_{sink}}{600}$$

$$T_{Sink} = 300 \, K$$

- 7. A bullet is fired from a gun at the speed of 280ms⁻¹ in the direction 30° above the horizontal. The maximum height attained by the bullet is
 - $(g = 9.8 \text{ms}^{-2}, \sin 30^\circ = 0.5)$:-
 - (A) 2000 m
- (B) 1000 m
- (C) 3000 m
- (D) 2800 m

- Ans. (B)
- **Sol.** $H_{\text{max}} = \frac{u^2 \sin^2 \theta}{2g}$

$$=\frac{(280)^2 \left(\sin 30^\circ\right)^2}{2(9.8)}$$

$$= 1000 \text{ m}$$

- 8. An electric dipole is placed at an angle of 30° with an electric field of intensity 2×10^{5} NC⁻¹. It experiences a torque equal to 4 N m. Calculate the magnitude of charge on the dipole, if the dipole length is 2 cm.
 - (A) 6 mC
- (B) 4 mC
- (C) 2 mC
- (D) 8 mC

- Ans. (C)
- **Sol.** τ on a dipole

$$4 = q \times \ell \times E \times \sin 30^{\circ}$$

$$4 = q \times 2 \times 10^{-2} \times 2 \times 10^{5} \times \frac{1}{2}$$

$$q = 2 \times 10^{-3}$$

$$q = 2 mC$$

- **9.** Given below are two statements:
 - **Statement I:** Photovoltaic devices can convert optical radiation into electricity.
 - Statement II: Zener diode is designed to operate under reverse bias in breakdown region.
 - In the light of the above statements, choose the **most appropriate** answer from the options given below:
 - (A) Both Statement I and Statement II are incorrect.
 - (B) **Statement I** is correct but **Statement II** is incorrect.
 - (C) **Statement I** is incorrect but **Statement II** is correct.
 - (D) Both Statement I and Statement II are correct
- Ans. (D)
- **Sol.** Statement I: Photocell/solar cell convert light energy into electric energy/current.

Statement II: We use zener diode in reverse biased condition, when reverse biased voltage more than break down voltage than it act as stablizer.

- **10.** The errors in the measurement which arise due to unpredictable fluctuations in temperature and voltage supply are :
 - (A) Personal errors

(B) Least count errors

(C) Random errors

(D) Instrumental errors

- Ans. (C)
- **Sol.** Error arise due to unpredictable fluctuation in temperature and voltage supply are \rightarrow random errors.
- **11.** The ratio of frequencies of fundamental harmonic produced by an open pipe to that of closed pipe having the same length is :
 - (A) 2:1
- (B) 1:3
- (C) 3:1
- (D) 1:2

- Ans. (A)
- Sol. $\frac{n_{\text{oop}}}{n_{\text{cop}}} = \frac{\frac{V}{2L}}{\frac{V}{4L}}$
 - $\Rightarrow \frac{n_{\text{oop}}}{n_{\text{cop}}} = \frac{2}{1}$
- **12.** The net magnetic flux through any closed surface is:
 - (A) Positive
- (B) Infinity
- (C) Negative
- (D) Zero

- Ans. (D)
- **Sol.** Magnetic field exist in

Closed Loops (Monopoles do not exist)

$$\phi = \overrightarrow{B} \cdot d\overrightarrow{A} = 0$$

(Gauss law for magnetism)

- 13. The work functions of Caesium (Cs), potassium (K) and Sodium (Na) are 2.14 eV, 2.30 eV and 2.75 eV respectively. If incident electromagnetic radiation has an incident energy of 2.20 eV, which of these photosensitive surfaces may emit photoelectrons?
 - (A) Both Na and K

(B) K only

(C) Na only

(D) Cs only

- Ans. (D)
- **Sol.** Given energy of photon E = 2.20 eV

Work function of Cs ϕ_0 = 2.14 eV, K ϕ_0 = 2.30 eV, Na ϕ_0 = 2.75 eV

We know that e- emitts when $hv > \phi_0$

here it is clear that energy of photon is more than the work function of Cs [Caesium] only so Ans. only (Cs).

- **14.** The minimum wavelength of X-rays produced by an electron accelerated through a potential difference of V volts is proportional to :
 - (A) $\frac{1}{V}$
- (B) $\frac{1}{\sqrt{V}}$
- (C) V²
- (D) \sqrt{V}

- Ans. (A)
- **Sol.** Minimum wavelength of X-Rays is

$$\lambda_{\min} = \frac{hC}{eV}$$

Hence $\lambda_{\min} \propto \frac{1}{V} \Rightarrow$ So Ans. $\left(\frac{1}{V}\right)$

- **15.** A 12 V, 60 W lamp is connected to the secondary of a step down transformer, whose primary is connected to ac mains of 220 V. Assuming the transformer to be ideal, what is the current in the primary winding?
 - (A) 2.7 A
- (B) 3.7 A
- (C) 0.37 A
- (D) 0.27 A

(D) Ans.

 $V_SI_S = V_PI_P$ (ideal Transformer) Sol.

$$\Rightarrow$$
 P_{out} = P_{in}

$$\Rightarrow$$
 60 = 220 × IP

$$I_P = \frac{60}{220} = 0.27 \,\text{A}$$

- **16.** Light travels a distance x in time t₁ in air and 10x in time t₂ in another denser medium. What is the critical angle for this medium?
 - (A) $\sin^{-1}\left(\frac{10t_2}{t_1}\right)$ (B) $\sin^{-1}\left(\frac{t_1}{10t_2}\right)$ (C) $\sin^{-1}\left(\frac{10t_1}{t_2}\right)$ (D) $\sin^{-1}\left(\frac{t_2}{t_1}\right)$

- Ans.
- Speed of light is air $V_1 = \frac{x}{t}$ Sol.
 - speed of light is a medium $V_2 = \frac{10x}{t}$
 - $\sin \theta_{\rm c} = \frac{V_2}{V_1} = \frac{10x}{t_2} \frac{t_1}{x}$
 - $\theta_{\rm c} = \sin^{-1} \left(\frac{10t_1}{t_1} \right)$
- **17.** A metal wire has mass (0.4 ± 0.002) g, radius (0.3 ± 0.001) mm and length (5 ± 0.02) cm. The maximum possible percentage error in the measurement of density will nearly be:
 - (A) 1.3%
- (B) 1.6%
- (C) 1.4%
- (D) 1.2%

- Ans.
- $\rho = \frac{M}{V}$ Sol.

$$\rho = \frac{M}{\pi r^2 \ell}$$

$$\frac{\Delta \rho}{\rho} = \frac{\Delta M}{M} + \frac{2\Delta r}{r} + \frac{\Delta \ell}{\ell}$$

$$\frac{\Delta \rho}{\rho} \% = \left[\frac{0.002}{0.4} + \frac{2(0.001)}{(0.3)} + \frac{0.02}{5} \right] \times 100\%$$

$$= \frac{1}{2}\% + \frac{2}{3}\% + \frac{2}{5}\%$$

18. For Young's double slit experiment, two statements are given below :

Statement I : If screen is moved away from the plane of slits, angular separation of the fringes remains constant.

Statement II: If the monochromatic source is replaced by another monochromatic source of larger wavelength, the angular separation of fringes decreases.

In the light of the above statements, choose the *correct* answer from the options given below:

- (A) Both Statement I and Statement II are false
- (B) Statement I is true but Statement II is false
- (C) Statement I is false but Statement II is true
- (D) Both Statement I and Statement II are true

Ans. (B)

Sol. Angular width, $\theta_{\rm w} = \frac{\lambda}{\rm d}$

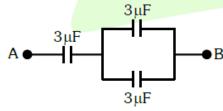
 θ_w independent of D but depends on λ

- 19. The half life of a radioactive substance is 20 minutes. In how much time, the activity of substance drops to $\left(\frac{1}{16}\right)^{th}$ of its initial value?
 - (A) 40 minutes
- (B) 60 minutes
- (C) 80 minutes
- (D) 20 minutes

- Ans. (C)
- **Sol.** Half life T = 20 min

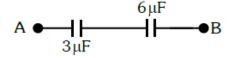
Left fraction of activity $\frac{1}{16}$

$$\because \frac{R}{R_0} = \left(\frac{1}{2}\right)^{t/T}$$


$$\frac{1}{16} = \left(\frac{1}{2}\right)^{t/20}$$

$$\left(\frac{1}{2}\right)^4 = \left(\frac{1}{2}\right)^{t/20}$$

$$4 = \frac{t}{20}$$


 $t = 80 \min$

20. The equivalent capacitance of the system shown in the following circuit is:

- (1) $3\mu F$
- (B) 6µF
- (C) 9µF
- (D) 2µF

- Ans. (
- **Sol.** $C_{AB} = \frac{3 \times 6}{3 + 6} = 2 \mu F$

- 21. Resistance of a carbon resistor determined from colour codes is $(22000 \pm 5\%) \Omega$. The colour of third band must be :
 - (A) Green
- (B) Orange
- (C) Yellow
- (D) Red

- Ans. (B)
- **Sol.** $R = \left[22 \times 10^3 \pm 5\%\right] \Omega$

Acc. to color code

Third Band → Orange

(color code for digit 3 is orange)

- **22.** An ac source is connected to a capacitor C. Due to decrease in its operating frequency :
 - (A) displacement current increases.
 - (B) displacement current decreases.
 - (C) capacitive reactance remains constant.
 - (D) capacitive reactance decreases.
- Ans. (B)
- **Sol.** $i_C = i_D = \frac{V_O}{X_C} \sin \omega t$

$$i_C = i_D = (V_O \omega C) \sin \omega t$$

On decreasing frequency $i_C \downarrow$

- 23. A vehicle travels half the distance with speed υ and the remaining distance with speed 2υ. Its average speed is :
 - (A) $\frac{2v}{3}$
- (B) $\frac{4v}{3}$
- (C) $\frac{3v}{4}$
- (D) $\frac{v}{3}$

- Ans. (B)
- Sol. S/2 S/2

$$V_{avg} = \frac{2v_1v_2}{v_1 + v_2} = \frac{2(v)(2v)}{v + 2v} = \frac{4v^2}{3v} = \frac{4v}{3}$$

- The amount of energy required to form a soap bubble of radius 2 cm from a soap solution is nearly: (surface tension of soap solution = 0.03 N m^{-1})
 - (A) 5.06×10^{-4} J

(B) 3.01×10^{-4} J

(C) 50.1×10^{-4} J

(D) $30.16 \times 10^{-4} \text{ J}$

- Ans. (B)
- **Sol.** $E = 2T(4\pi R^2)$
 - $= 2 (0.03) (4) (3.14) (2 \times 10^{-2})^{2}$
 - $= 3.01 \times 10^{-4}$ J
- **25.** The venturi-meter works on :
 - (A) Bernoulli's principle

- (B) The principle of parallel axes
- (C) The principle of perpendicular axes
- (D) Huygen's principle

- Ans. (A)
- **Sol.** Venturimeter works an Bernoulli's principle

- **26.** In hydrogen spectrum, the shortest wavelength in the Balmer series is λ . The shortest wavelength in the Bracket series is :
 - $(1) 4\lambda$
- (B) 9λ
- $(C) 16\lambda$
- (D) 2λ

Ans. (A)

Sol. Shortest wavelength in Balmer series when transition of e- from ∞ to n = 2

$$\because \frac{1}{\lambda} = Rz^2 \left[\frac{1}{2^2} - \frac{1}{\infty^2} \right]$$

- $\frac{1}{\lambda} = \frac{R}{4}$
- ...(1)

Shortest wavelength is Bracket series when transition of e- from ∞ to n = 4

$$\frac{1}{\lambda'} = R(1)^2 \left[\frac{1}{4^2} - \frac{1}{\infty^2} \right] \Rightarrow \frac{1}{\lambda'} = \frac{R}{16}$$

Eq. (1)/Eq. (2)

$$\frac{\lambda^{'}}{\lambda} = \frac{R}{4} \times \frac{16}{R} \Longrightarrow \lambda^{'} = 4\lambda$$

- 27. The potential energy of a long spring when stretched by 2 cm is U. If the spring is stretched by 8 cm, potential energy stored in it will be:
 - (A) 4U
- (B) 8U
- (C) 16U
- (D) 2U

Ans. (C)

Sol. $U = \frac{1}{2}kx^2$

for
$$x = 2$$

$$U = \frac{1}{2}k(2)^2$$

$$U' = \frac{1}{2}k(8)^2$$

$$\Rightarrow \frac{U'}{U} = \left(\frac{8}{2}\right)^2$$

$$\Rightarrow$$
 U' = 16U

$$\Rightarrow$$
 U' = 16U

- 28. A full wave rectifier circuit consists of two p-n junction diodes, a centre-tapped transformer, capacitor and a load resistance. Which of these components remove the ac ripple from the rectified output?
 - (A) p-n junction diodes

(B) Capacitor

(C) Load resistance

(D) A centre-tapped transformer

Ans. (B)

Sol. Capacitor used to remove AC ripples from Rectifier output.

- 29. The magnetic energy stored in an inductor of inductance $4\mu H$ carrying a current of 2 A is:
 - (A) 4 mJ
- (B) 8 mJ
- $(C) 8 \mu J$
- (D) 4 µJ

Ans. (C)

Sol. Energy $=\frac{1}{2}Li^2$

$$=\frac{1}{2}4\times10^{-6}\times2^{2}$$

$$= 8 \times 10^{-6} \text{ J}$$

energy =
$$8 \mu J$$

- **30.** If $\oint \vec{E} \cdot \vec{dS} = 0$ over a surface, then:
 - (A) the magnitude of electric field on the surface is constant.
 - (B) all the charges must necessarily be inside the surface.
 - (C) the electric field inside the surface is necessarily uniform.
 - (D) the number of flux lines entering the surface must be equal to the number of flux lines leaving it.

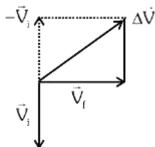
Ans. (D)

Sol. $\phi_{closed} = 0$

So
$$\phi_{in} = \phi_{out}$$

Number of field lines entering is equal number of field lines leaving.

- 31. A football player is moving southward and suddenly turns eastward with the same speed to avoid an opponent. The force that acts on the player while turning is:
 - (A) along northward (B) along north-east
 - (C) along south-west (D) along eastward


Ans. (B)

Sol. $\vec{V}_i = (V)$ (southward)

$$\vec{V}_F = (V)$$
 (Eastward)

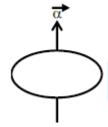
$$\overrightarrow{\Delta V} = \vec{V}_F - \vec{V}_i$$

= Along North-East

- **32.** Let a wire be suspended from the ceiling (rigid support) and stretched by a weight W attached at its free end. The longitudinal stress at any point of cross-sectional area A of the wire is:
 - (A) W/A
- (B) W/2A
- (C) Zero
- (D) 2W/A

Ans. (A)

Sol. Stress = $\frac{IRF}{A}$


$$Stress = \frac{W}{A}$$

(Here A Cross-sectional Area)

- 33. The angular acceleration of a body, moving along the circumference of a circle, is:
 - (A) along the radius towards the centre
 - (B) along the tangent to its position
 - (C) along the axis of rotation
 - (D) along the radius, away from centre

Ans. (C)

Sol.

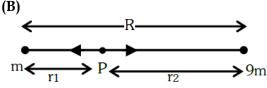
Along the axis of rotation

- 34. In a plane electromagnetic wave travelling in free space, the electric field component oscillates sinusoidally at a frequency of 2.0×10^{10} Hz and amplitude 48 Vm⁻¹. Then the amplitude of oscillating magnetic field is: (Speed of light in free space = 3×10^8 m s⁻¹)
 - (A) 1.6×10^{-8} T

(B) $1.6 \times 10^{-7} \text{ T}$

(C) 1.6×10^{-6} T

(D) $1.6 \times 10^{-9} \text{ T}$


Ans. (B)

- **Sol.** $C = \frac{E_0}{B_0}$
 - $B_0 = \frac{E_0}{C}$
 - $=\frac{48}{3\times10^8}$
 - $= 1.6 \times 10^{-7} \, \mathrm{T}$

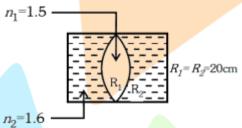
- 35. Two bodies of mass m and 9m are placed at a distance R. The gravitational potential on the line joining the bodies where the gravitational field equals zero, will be (G = gravitational constant):
 - (A) $-\frac{12Gm}{R}$
- (B) $-\frac{16Gn}{R}$
- $(C) \frac{20Gm}{R}$
- (D) $-\frac{8Gm}{R}$

Ans.

Sol.

Position of Neutral point (Zero Gravitational Field)

$$r_1 = \frac{\sqrt{m_1}R}{\sqrt{m_1} + \sqrt{m_2}} = \frac{\sqrt{m}R}{\sqrt{m} + \sqrt{9m}} = \frac{R}{4}$$


$$r_2 = R - R/4 = 3R/4$$

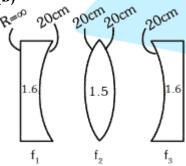
Now Gravitational potential at point P

$$V_{P} = -\frac{GM}{R/4} - \frac{9(GM)}{3R/4}$$
$$= \frac{-16GM}{R}$$

Section -B

36. In the figure shown here, what is the equivalent focal length of the combination of lenses (Assume that all layers are thin)?

(A) – 40 cm


(B) -100 cm

(C) -50 cm

(D) 40 cm

Ans. (E

Sol.

Use
$$\frac{1}{f} = [\mu - 1] \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

$$\frac{1}{f_1} = [1.6 - 1] \left[\frac{1}{\infty} - \frac{1}{20} \right] = \frac{-3}{100}$$

$$\frac{1}{f_2} = [1.5 - 1] \left[\frac{1}{20} + \frac{1}{20} \right] = \frac{1}{20}$$

$$\frac{1}{f_3} = \frac{-3}{100}$$

 \Rightarrow

$$\frac{1}{f_{eq}} = -\frac{3}{100} + \frac{1}{20} - \frac{3}{100} = \frac{-1}{100}$$

$$\frac{1}{f_{22}} = \frac{1}{f_1} + \frac{1}{f_2} + \frac{1}{f_2}$$

- 37. Calculate the maximum acceleration of a moving car so that a body lying on the floor of the car remains stationary. The coefficient of static friction between the body and the floor is 0.15 $(g = 10 \text{ m s}^{-2}).$
 - (A) 150 m s⁻²
- (B) 1.5 m s^{-2}
- (C) 50 m s^{-2}
- (D) 1.2 m s^{-2}

(B) Ans.

Sol. $F_S = ma$

$$\mu$$
 mg = ma_{max}

$$a_{max} = \mu g$$

$$= 0.15(10)$$

$$= 1.5 \text{ m/s}^2$$


- 38. A satellite is orbiting just above the surface of the earth with period T. If d is the density of the earth and G is the universal constant of gravitation, the quantity $\frac{3\pi}{Gd}$ represents:
 - (A) T²
- (B) T³
- (C) \sqrt{T}
- (D) T

(A) Ans.

 $T = \frac{2\pi}{\sqrt{GM}} r^{3/2} \Rightarrow T^2 = \frac{4\pi^2 R^3}{G\left(\frac{4}{3}\pi R^3 d\right)} \quad (r = R)$ Sol.

$$T^2 = \frac{3\pi}{Gd}$$

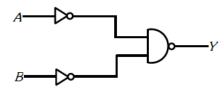
39. The x - t graph of a particle performing simple harmonic motion is shown in the figure. The acceleration of the particle at t = 2 s is:

- (A) $-\frac{\pi^2}{8} \text{m s}^{-2}$ (B) $\frac{\pi^2}{16} \text{ms}^{-2}$
- (C) $-\frac{\pi^2}{16} \text{ms}^{-2}$ (D) $\frac{\pi^2}{8} \text{ms}^{-2}$

Ans.

Sol. $x = A \sin(\omega t)$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = v = A\omega\cos(\omega t)$$


$$\frac{\mathrm{dv}}{\mathrm{dt}} = a = -\omega^2 \, \mathrm{A} \sin(\omega t)$$

$$a = -\left(\frac{2\pi}{8}\right)^2 \times 1\sin\left(\frac{2\pi}{8} \times 2\right)$$

$$\Rightarrow a = -\frac{\pi^2}{16} \times \sin\left(\frac{\pi}{2}\right)$$

$$\therefore a = \frac{-\pi^2}{16} \, \text{m/s}^2$$

40. For the following logic circuit, the truth table is:

0

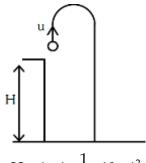
Y

1

1

0

В Y


- Ans. (A)
- $y = \overline{\overline{A}} \cdot \overline{\overline{B}} = \overline{\overline{A}} + \overline{\overline{B}}$ Sol.
 - = (A + B) OR Gate

Α	В	У
0	0	0
0	1	1
1	0	1
1	1	1

В Y 0 0 0 0 1 (A) 0(B) 0 1 1 1 1 1 0 1 1 1 1 1 0 В A Α В 0 0 0 (D) 0(C) 0 1 1 1 0 1 0 1 1 1

- 41. A horizontal bridge is built across a river. A student standing on the bridge throws a small ball vertically upwards with a velocity 4 m s⁻¹. The ball strikes the water surface after 4 s. The height of bridge above water surface is (Take $g = 10 \text{ m s}^{-2}$)
 - (A) 60 m
- (B) 64 m
- (C) 68 m
- (D) 56 m

- (B) Ans.
- $S = ut + \frac{1}{2}at^2$ Sol.

- $-H = 4 \times 4 \frac{1}{2} \times 10 \times 4^{2}$
- -H = 16 80
- -H = -64
- H = 64 m

- **42.** Two thin lenses are of same focal lengths (*f*), but one is convex and the other one is concave. When they are placed in contact with each other, the equivalent focal length of the combination will be:
 - (A) f/4
- (B) f/2
- (C) Infinite
- (D) Zero

Ans. (C)

Sol.
$$\frac{1}{f_{eq}} = \frac{1}{f_1} + \frac{1}{f_2}$$
$$\frac{1}{f_{eq}} = \frac{1}{f} - \frac{1}{f}$$

$$f_{eq} = \infty$$

- A wire carrying a current I along the positive x-axis has length L. It is kept in a magnetic field $\vec{B} = (2\hat{i} + 3\hat{j} 4\hat{k})T$. The magnitude of the magnetic force acting on the wire is:
 - (A) $\sqrt{5}$ IL
- (B) 5 IL
- (C) $\sqrt{3}$ IL
- (D) 3 IL

Ans. (B)

Sol.
$$\vec{F} = I(\vec{\ell} \times \vec{B})$$

$$= I[(L\hat{i}) \times (2\hat{i} + 3\hat{j} - 4\hat{k})]$$

$$= I(4L\hat{j} + 3L\hat{k})$$

$$|\vec{F}| = 5IL$$

- 44. A bullet from a gun is fired on a rectangular wooden block with velocity u. When bullet travels 24 cm through the block along its length horizontally, velocity of bullet becomes $\frac{u}{3}$. Then it further penetrates into the block in the same direction before coming to rest exactly at the other end of the block. The total length of the block is:
 - (A) 24 cm
- (B) 28 cm
- (C) 30 cm
- (D) 27 cm

Ans. (D)

Sol. By
$$v^2 = u^2 + 2as$$

$$\left(\frac{u}{3}\right)^2 = u^2 - 2ax$$

$$2ax = u^2 - \frac{u^2}{9}$$

$$2ax = \frac{8u^2}{9}$$

Similarly from starting

$$v^2 = u^2 + 2ax$$

$$0 = u^2 - 2ax_2$$

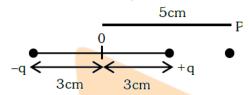
$$2ax_2 = u^2$$

$$\frac{x}{x_2} = \frac{8}{9}$$

$$\frac{24}{x} = \frac{8}{9}$$

$$x_2 = 27 \text{ cm}$$

- **45.** The resistance of platinum wire at 0°C is 2Ω and 6.8Ω at 80°C. The temperature coefficient of resistance of the wire is:
 - (A) 3×10^{-3} °C⁻¹
- (B) $3 \times 10^{-2} \, ^{\circ}\text{C}^{-1}$
- (C) 3×10^{-1} °C⁻¹ (D) 3×10^{-4} °C⁻¹

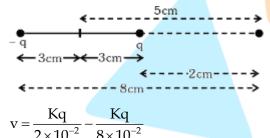

Ans.

 $R_T = R_o \left[1 + \alpha (T - T_o) \right]$ Sol.

$$6.8 = 2[1 + \alpha(80 - \alpha)]$$

$$\alpha = \frac{2.4}{80} = 0.03 \, / \, ^{\circ} \text{C} = 3 \times 10^{-2} \, / \, ^{\circ} \text{C}$$

46. An electric dipole is placed as shown in the figure.


The electric potential (in 10^2 V) at point P due to the dipole is (ϵ_0 =permittivity of free space and

$$\frac{1}{4\pi \in_{0}} = K$$
):

- (A) $\left(\frac{5}{8}\right)$ qK (B) $\left(\frac{8}{5}\right)$ qK (C) $\left(\frac{8}{3}\right)$ qK (D) $\left(\frac{3}{8}\right)$ qK

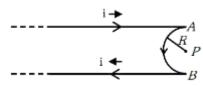
Ans.

Sol.

$$= Kq \left[\frac{3}{8} \right] \times 10^2$$

- **47.** 10 resistors, each of resistance R are connected in series to a battery of emf E and negligible internal resistance. Then those are connected in parallel to the same battery, the current is increased n times. The value of n is:
 - (A) 100
- (B) 1
- (C) 1000
- (D) 10

Ans.


Sol.
$$I_S = \frac{E}{10R}$$

$$I_{P} = \frac{E}{R/10} = \frac{10E}{R}$$

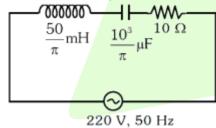
$$n = \frac{I_p}{I_s} = 100 \Longrightarrow n = 100$$

48. A very long conducting wire is bent in a semi-circular shape from *A* to *B* as shown in figure. The magnetic field at point *P* for steady current configuration is given by :

- (A) $\frac{\mu_0 i}{4R}$ pointed away from the page
- (B) $\frac{\mu_0 i}{4R} \left[1 \frac{2}{\pi} \right]$ pointed away from the page
- (C) $\frac{\mu_0 i}{4R} \left[1 \frac{2}{\pi} \right]$ pointed into the page
- (D) $\frac{\mu_0 \mathbf{i}}{4 \mathbf{R}}$ pointed into the page
- Ans. (B)
- **Sol.** $B = \frac{\mu_0}{4\pi} \frac{I}{R} (\pi) \frac{\mu_0}{4\pi} \frac{2I}{R}$

 $\frac{\mu_0 i}{4R} \left[1 - \frac{2}{\pi} \right]$ outward i.e away from page.

- 49. The radius of inner most orbit of hydrogen atom is 5.3×10^{-11} m. What is the radius of third allowed orbit of hydrogen atom?
 - (A) 1.06 Å
- (B) 1.59 Å
- (C) 4.77 Å
- (D) 0.53 Å


- Ans. (C)
- **Sol.** Radius of nth orbit in Hydrogen Atom

$$r_{\rm n} = 0.53 \times \frac{\rm n^2}{\rm Z} \rm \mathring{A}$$

So, radius of third orbit

$$r_3 = 0.53 \times \frac{(3)^2}{(1)} \text{Å} = 4.77 \text{Å}$$

50. The net impedance of circuit (as shown in figure) will be:

- (A) 15 Ω
- (B) $5\sqrt{5}\Omega$
- (C) 25 Ω
- (D) $10\sqrt{2}\Omega$

- Ans. (B
- **Sol.** $X_{L} = \frac{50}{L} \times 10^{-3} \times 2\pi \times 50 = 5\Omega$

$$X_{C} = \frac{1}{2\pi \times 50 \times \frac{10^{3}}{\pi} \times 10^{-6}} = 10\Omega$$

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$
$$= \sqrt{(10)^2 + (5)^2}$$

 $=5\sqrt{5}\Omega$

51. Given below are two statements: One is labelled as Assertion **A** and the other is labelled as Reason **R**:

Assertion A: Metallic sodium dissolves in liquid ammonia giving a deep blue solution, which is paramagnetic.

Reason **R**: The deep blue solution is due to the formation of amide.

In the light of the above statements, choose the correct answer from the options given below:

- (A) Both **A** and **R** are true but **R** is NOT the correct explanation of **A**.
- (B) **A** is true but **R** is false
- (C) **A** is false but **R** is true
- (D) Both **A** and **R** are true and **R** is the correct explanation of **A**.

Ans. (B)

- **Sol.** Assertion is correct because all Alkali metals gives deep blue solution by giving electrons. Reason is incorrect because deep blue solution appears due to the presence of ammoniated electron or solvated electrons.
- 52. The conductivity of centimolar solution of KCl at 25°C is 0.0210ohm⁻¹ cm⁻¹ and the resistance of the cell containing the solution at 25°C is 60 ohm. The value of cell constant is
 - (A) 3.28 cm^{-1}
- (B) 1.26 cm^{-1}
- (C) 3.34 cm^{-1}
- (D) 1.34 cm^{-1}

Ans. (B)

Sol. Centimolar solution = $\frac{1}{100}$ M = 0.01M

Conductivity $(k) = 0.0210 \text{ ohm}^{-1} \text{ cm}^{-1}$

Resistance (R) = 60 ohm

$$k = \frac{1}{R} \left(\frac{\ell}{A} \right)$$

$$\Rightarrow$$
 0.0210 = $\frac{1}{60} \left(\frac{\ell}{A} \right) \Rightarrow \frac{\ell}{A} = 1.26 \text{cm}^{-1}$

- 53. For a certain reaction, the rate = $k[A]^2[B]$, when the initial concentration of A is tripled keeping concentration of B constant, the initial rate would
 - (A) increase by a factor of six
 - (B) increase by a factor of nine
 - (C) increase by a factor of three
 - (D) decrease by a factor of nine

Ans. (B)

Sol. Rate = $k[A]^2[B]$

If [A] is tripled and [B] is kept constant.

$$r^1 = k[3A]^2[B]$$

$$r^1=9k[A]^2[\ B]$$

$$r^1 = 9r$$

Increased by a factor of nine

54. Identify product (A) is the following reaction :

$$CH_{3}$$

$$CH_{4}$$

$$CH_{4}$$

$$CH_{4}$$

$$CH_{4}$$

$$CH_{4}$$

$$C$$

Ans. (D)

Sol.

- 55. Which one is an example of heterogenous catalysis?
 - (A) Hydrolysis of sugar catalysed by H⁺ ions.
 - (B) Decomposition of ozone in presence of nitrogen monoxide.
 - (C) Combination between dinitrogen and dihydrogen to form ammonia in the presence of finely divided iron.
 - (D) Oxidation of sulphur dioxide into sulphur trioxide in the presence of Oxides of nitrogen.

Ans. (C)

Sol. (A)
$$C_{12}H_{22}O_{11 \text{ (aq)}} + H_2O \xrightarrow{H^+} C_6H_{12}O_{6 \text{(aq)}} + C_6H_{12}O_{6 \text{ (aq)}}$$
 (Homogeneous reaction)

(B)
$$2O_{3(g)} \xrightarrow{NO(g)} 3O_{2(g)}$$
 (Homogeneous reaction)

$$(C)N_{2(g)} + 3H_{2(g)} \xrightarrow{Fe(s)} 2NH_{3(g)}$$

(Reactants and catalyst are in different phase)

It is heterogeneous reaction

$$(D)SO_{2(g)} + \frac{1}{2}O_{2(g)} \xrightarrow{NO_{(g)}} SO_{3(g)} (Homogeneous \ reaction)$$

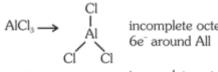
56. Given below are two statements: One is labelled as

Assertion A and the other is labelled as Reason R.

Assertion A: Helium is used to dilute oxygen in diving apparatus.

Reasons R: Helium has high solubility in O₂.

In the light of the above statements, choose the correct answer from the options given below:


- (A) Both A and R are true but R is NOT the correct explanation of A.
- (B) A is true but R is false
- (C) A is false but R is true
- (D) Both A and R are true and R is the correct explanation of A.
- Ans. (B
- **Sol.** Assertion is true because He has low solubility in blood. (NCERT)
- 57. Amongst the following, the total number of species NOT having eight electrons around central atom in its outer most shell, is

NH₃, AlCl₃, BeCl₂, CCl₄, PCl₅:

- (A) 2
- (B) 4
- (C) 1
- (D) 3

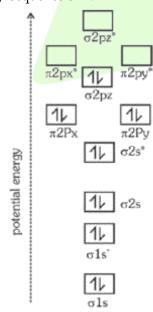
Ans. (D)

Sol. Total number of species = 3

$$PCI_s \rightarrow CI \downarrow P-CI \quad super/hyper valent$$

58. The correct order of energies of molecular orbitals of N₂ molecule, is

(A)
$$\sigma 1 \text{ s} < \sigma^* 1 \text{ s} < \sigma 2 \text{ s} < \sigma^* 2 \text{ s} < \sigma 2 p_z < (\pi 2 p_x = \pi 2 p_y) < (\pi^* 2 p_x = \pi^* 2 p_y) < \sigma^* 2 p_z$$


(B)
$$\sigma 1 \text{ s} < \sigma^* 1 \text{ s} < \sigma 2 \text{ s} < \sigma^* 2 \text{ s} < \sigma 2 p_z < \sigma^* 2 p_z < \left(\frac{\pi 2p_x = \pi 2p_y}{\sigma^*}\right) < \left(\pi^* 2p_x = \pi^* 2p_y\right)$$

(C)
$$\sigma ls < \sigma^* 1 s < \sigma 2 s < \sigma^* 2 s < (\pi 2p_x = \pi 2p_y) < (\pi^* 2p_x = \pi^* 2p_y) < \sigma 2p_z < \sigma^* 2p_z$$

(D)
$$\sigma 1 \text{ s} < \sigma^* 1 \text{ s} < \sigma 2 \text{ s} < \sigma^* 2 \text{ s} < (\pi 2p_x = \pi 2p_y) < \sigma 2p_z < (\pi^* 2p_x = \pi^* 2p_y) < \sigma^* 2p_z$$

Ans. (D

Sol. Molecular orbital (energy) diagram / sequence of N₂

59. Match List-I with List-II.

List-II List-II

A. Coke I. Carbon atoms are sp³ hybridised

B. Diamond II. Used as a dry lubricant

C. Fullerene III. Used as a reducing agent

D. Graphite IV. Cage like molecules

Choose the correct answer from the options given below:

(A) A W. D. I. C. H. D. HI

(A) A-IV, B-I, C-II, D-III (B) A-III, B-I, C-IV, D-II

(C) A-III, B-IV, C-I, D-II (D) A-II, B-IV, C-I, D-III

Ans. (B)

Sol. Coke: It is used as reducing agent in carbon reduction methods. (in metallurgical process)

Diamond: It is a allotrope of carbon in which each carbon is sp³ hybridised.

Fullerene: It contains pentagonal & hexagonal rings (cage like structure)

Graphite: It is soft solid because graphite layers are

bonded with weak Vander Wall attractions.

60. The number of σ bonds, π bonds and lone pair of electrons in pyridine, respectively are :

(A) 12,3,0

(B) 11,3,1

(C) 12,2,1

(D) 11,2,0

Ans. (B)

Sol. H

H

No. of
$$\sigma$$
 Bonds \rightarrow 11

No. of π Bonds \rightarrow 3

No. of Lone pair \rightarrow 1

61. The element expected to form largest ion to achieve the nearest noble gas configuration is

(A) F

(B) N

(C) Na

(D) O

Ans. (B)

Sol. F^- , N^{3-} , $Na^+ \& O^{2-}$

all ions are isoelectronic containing 10e⁻

$$\rm Z_{eff} \, \to Na^{+} > F^{-} > 0^{2-} > N^{3-}$$

order of radius $\rightarrow N^{3-} > 0^{2-} > F^- > Na^+$

→ Nitrogen to achieve Noble gas configuration it gain 3e⁻, & form N³⁻

62. Given below are two statements: one is labelled as Assertion **A** and the other is labelled as Reason R.

Assertion A : A reaction can have zero activation energy.

Reasons **R**: The minimum extra amount of energy absorbed by reactant molecules so that their energy becomes equal to threshold value, is called activation energy.

In the light of the above statements, choose the correct answer from the options given below:

- (A) Both **A** and **R** are true but **R** is NOT the correct explanation of **A**.
- (B) A is true but R is false
- (C) **A** is false but **R** is true
- (D) Both **A** and **R** are true and **R** is the correct explanation of **A**.

Ans. (C)

- Sol. A reaction cannot have zero activation energy. E_a is minimum extra amount of energy absorbed by reactant molecules so that their energy becomes equal to threshold value.
- 63. Consider the following reaction and identify the product (P).

$$\begin{array}{c|c} CH_3-CH-CH_3 & \xrightarrow{HBr} & Product (P) \\ \hline CH_3 & OH \\ \hline 3-Methylbutan-2-ol \end{array}$$

- (A) $CH_3CH = CH CH_3$

Ans. (D) Sol.

$$CH_3$$
- CH - CH - CH_3 + H - Br \rightarrow Product (P)
 CH_3 OH
 H^{\oplus} \downarrow - H_2 O

$$CH_{3}-CH-CH-CH_{3} \xrightarrow{1,2 \text{ Hydride shift}} CH_{3}-C-CH_{2}-CH_{3}$$

$$CH_{3} \qquad CH_{3}$$

$$(\alpha_{H}=4) \qquad (\alpha_{H}=8) \qquad \downarrow Br^{\Theta}$$

$$Br \qquad \downarrow CH_{3}-C-CH_{2}-CH_{3}$$

$$CH_{3} \qquad (CH_{3}-C-CH_{2}-CH_{3})$$

$$CH_{3} \qquad (CH_{3}-C-CH_{2}-CH_{3})$$

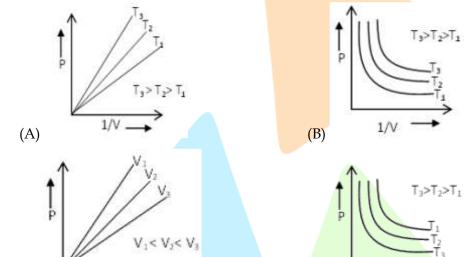
$$CH_{3} \qquad (CH_{3}-C-CH_{3}-CH_{3})$$

$$CH_{3} \qquad (CH_{3}-C-CH_{3}-CH_{3})$$

64. Given below are two statements: One is labelled as Assertion A and the other is labelled as

Reason R:

Assertion A : In equation $\Delta_r G = -nFE_{cell}$ cell, value of $\Delta_r G$ depends on n.


Reasons ${f R}$: E_{cell} is an intensive property and $\Delta_r G$ is an extensive property.

In the light of the above statements, choose the correct answer from the options given below:

- (A) Both **A** and **R** are true and **R** is NOT the correct explanation of **A**.
- (B) **A** is true but **R** is false
- (C) A is false but R is true
- (D) Both A and R are true and R is the correct explanation of A.

Ans. (D)

- **Sol.** In the equation $\Delta_r G = -nFE$ cell , the value of $\Delta_r G$ depends on n. The reason for this is that \vec{E}_{cell} is an intensive property and $\Delta_r G$ is an extensive property.
- 65. Which amongst the following options is correct graphical representation of Boyle's Law?

Ans. (A

(C)

- **Sol.** Boyle's law is defined at constant temperature for an ideal gas.
- 66. In Lassaigne's extract of an organic compound, both nitrogen and sulphur are present, which gives blood red colour with Fe3+ due to the formation of-

(D)

(A) NaSCN

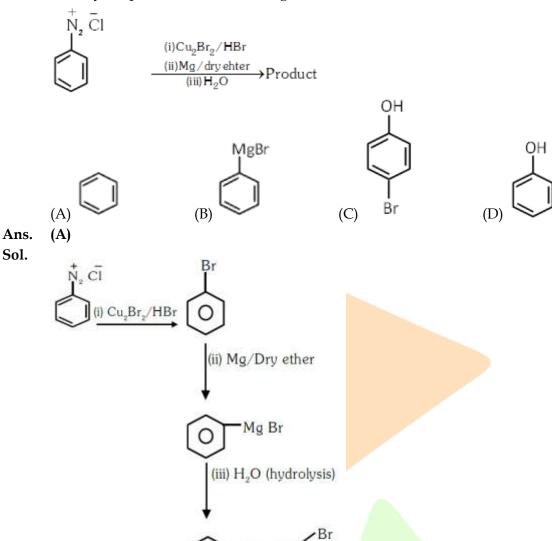
(B) [Fe(CN)₅NCS]₄-

(C) [Fe(SCN)²⁺

(D) $Fe^4[Fe(CN_6)]_3.xH_2O$

Ans. (C)

Sol. In case nitrogen and sulphur both are present in an organic compound, sodium thiocyanate is formed, it give blood red colour and no prussian blue since there are no free cyanide Ions


$$Na + C + N + S \rightarrow NaSCN$$

$$Fe^{+3} + SCN^{\Theta} \longrightarrow [Fe(SCN)]^{2+}$$

Blood red

67. Identify the product in the following reaction :

- **68.** Select the correct Statements from the following:
 - 1. Atoms of all elements are composed of two fundamental particles.
 - 2. The mass of the electron is 9.10939×10^{-31} kg.
 - 3. All the isotopes of a given elements show same chemical properties.
 - 4. Protons and electrons are collectively known as nucleons.
 - 5. Dalton's atomic theory, regarded the atom as an ultimate particle of matter.

Choose the correct answer from the options given below.

- (A) 3, 4 and 5 only
- (B) 1 and 5 only
- (C) 2, 3 and 5 only
- (D) 1, 2 and 3 only

Ans. (C)

Sol. It is statement based question.

Statements 2, 3 & 5 are correct.

- (2) Mass of the electron is $9.10939 \times 10^{-31} \text{ kg}$
- (3) All the isotopes of given elements show same chemical properties.
- (5) Dalton's atomic theory, regarded the atom as an ultimate particle of matter.

- A compound is formed by two elements A and B. The elements B forms cubic close packed 69. structure and atoms of A occupy 1/3 of tetrahedral voids. If the formula of the compound is AxBy, then the value of x + y is in option
 - (A) 4
- (B)3
- (C) 2
- (D) 5

(D) Ans.

Sol.

$$\frac{1}{3}$$
THV

$$\Rightarrow Z_A = \frac{1}{3} \times 8 = \frac{8}{3} \qquad Z_B = 4$$

$$Z_{\rm B}=4$$

$$\Rightarrow = \frac{8}{3}:4$$

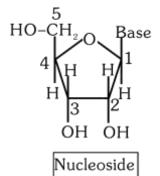
$$\Rightarrow \frac{2}{3}:1$$

2:3

$$A_2 B_3$$

simplest formula \downarrow \downarrow

$$x + y = 5$$


70. Given below are two statements:

> Statement I : A unit formed by the attachment of a base to 1'-position of sugar is known as nucleoside

Statement II: When nucleoside is linked to phosphorous acid at 5'-position of sugar moiety, we get nucleotide.

In the light of the above statements, choose the correct answer from the options given below:

- (A) Both Statement I and Statement II are false
- (B) Statement I is true but Statement II is false
- (C) Statement I is false but Statement II is true
- (D) Both Statement I and Statement II are true
- (B) Ans.
- Sol.

Base link with 1' position of sugar in nucleoside so statement I is correct

→ When nucleoside is linked to phosphoric acid at

5' position of sugar moiety we get a Nucleotide

 \Downarrow

Statement II is Incorrect because not link with phosphorous acid.

71. Which amongst the following molecules on polymerization produces neoprene?

(A)
$$H_2C = C - CH = CH_2$$

(B)
$$H_2C = CH - C \equiv CH$$

$$CH_3 \\ | \\ (C) \ H_2C = C - CH = CH_2$$

(D)
$$H_2C = CH - CH = CH_2$$

Ans. (A)

Sol.
$$CH_2 = C - CH = CH_2$$

Chloroprene

Temp & Pressure

 CI
 $CH_2 - C = CH - CH_2$

Neoprene

- **72.** Taking stability as the factor, which one of the following represents correct relationship?
 - (A) $InI_3 > lnI$

(B) $A\ell C\ell > A\ell C\ell_3$

(C) $T\ell I > T\ell I_3$

(D) $T\ell C\ell_3 > T\ell C\ell$

Ans. (C)

Sol. $T\ell^+ \& I^- > T\ell^{+3} \& 3I^-$

due to inert pair effect $T\ell^+$ is more stable than $T\ell^{+3}$.

- 73. Some tranquilizers are listed below. Which one from the following belongs to barbiturates?
 - (A) Meprobamate

(B) Valium

(C) Veronal

(D) Chlordiazepoxide

Ans. (C)

Sol. Veronal is an example of barbiturates.

- **74.** Which of the following statements are NOT correct?
 - A. Hydrogen is used to reduce heavy metal oxides to metals.
 - B. Heavy water is used to study reaction mechanism.
 - C. Hydrogen is used to make saturated fats from oils
 - D. The H-H bond dissociation enthalpy is lowest as compared to a single bond between two atoms of any element.
 - E. Hydrogen reduces oxides of metals that are more active than iron.

Choose the most appropriate answer from the options given below:

- (A) B,D only
- (B) D,E only
- (C) A,B,C only
- (D) B,C,D,E only

Ans. (B)

Sol. Explanation

- (D) H-H bond strength/ bond dissociation energy/bond energy of H_2 can not be lowest because bond formed between hydrogen atoms is due to overlapping of 1s 1s.
- (E) Hydrogen can not reduces oxides of highly reactive metal.
- 75. Intermolecular forces are forces of attraction and repulsion between interacting particles that will include:
 - 1. dipole dipole forces.
 - 2. dipole induced dipole forces
 - 3. hydrogen bonding
 - 4. covalent bonding
 - dispersion forces

Choose the most appropriate answer from the options given below:

- (A) 1, 2, 3, 4 are correct
- (B) 1, 2, 3, 5 are correct
- (C) 1, 3, 4, 5 are correct
- (D) 2, 3, 4, 5 are correct

Ans. (B)

Sol. Explanation

- 1. Intermolecular forces means force of attraction between two or more molecules dipole-dipole (attraction between two or more polar molecules).
- 2. Dipole induced dipole (attraction between polar and non polar molecules).
- 3. Hydrogen bonding (it is a special type of dipoledipole and ion-dipole attraction).
- **5.** Dispersion forces (mainly acts between non polar molecules). Covalent bonding (acts between atom not between molecules).
- **76.** Amongst the given options which of the following molecules/ion acts as a Lewis acid?
 - $(A) H_2 O$
- (B) BF_3
- $(C) OH^{-}$
- (D) NH_3

Ans. (B)

Sol. H_2O OH
OH
NH
NH

does not contain vacant orbital

 $BF_3 \rightarrow Contains vacant orbital on central atom (Boron).$

77. The right option for the mass of CO₂ produced by heating 20 g of 20% pure limestone is (Atomic mass of Ca = 40)

$$\begin{bmatrix}
CaCO_3 \xrightarrow{1200K} CaO + CO_2
\end{bmatrix}$$
(C) 1.32 g

- (A) 1.76 g
- (B) 2.64 g
- (D) 1.12 g

- Ans.
- Sol. Weight of impure limestone = 20 g

Weight of pure limestone ($CaCO_3$) = 20% of 20 g

$$=\frac{20}{100}\times 20$$

$$=4g$$

$$n_{CaCO_3} = \frac{4}{100} = 0.04$$

$$CaCO_3 \rightarrow CaO + CO_2$$

$$n = 0.04 n = 0.04$$

$$n_{CO_2} = 0.04$$

$$W_{CO_2} = 0.04 \times 44$$

$$= 1.76 g$$

- The relation between n_m , (n_m = the number of permissible values of magnetic quantum number **78.** (m)) for a given value of azimuthal quantum number (l), is
 - (A) $l = 2n_m + 1$

(B) $n_m = 2l^2 + 1$

(C) $n_{\rm m} = l + 2$

(D) $l = \frac{n_m - 1}{2}$

- (D) Ans.
- Number of permissible values of magnetic quantum number for a given value of azimuthal Sol. quantum (ℓ)

$$\Rightarrow$$
 n_m = $2\ell + 1$

$$\Rightarrow \ell = \frac{n_m - 1}{2}$$

- The stability of Cu²⁺ is more than Cu⁺salts in aqueous solution due to 79.
 - (A) enthalpy of atomization.
 - (B) hydration energy.
 - (C) second ionisation enthalpy.
 - (D) first ionisation enthalpy.
- Ans.
- $Cu(s) \rightarrow Cu(g) \rightarrow Cu_{(g)}^+ \rightarrow Cu_{(g)}^{2+} \rightarrow Cu_{(aq)}^{2+}$ Sol.

$$\Delta H_{atomisation}$$
 IE_1 IE_2 $Hydration$ $energy$

- Cu²⁺ is more stable than Cu⁺ because released hydration energy is more in case of Cu²⁺ than Cu⁺.
- Which one of the following statements is correct? 80.
 - (A) All enzymes that utilise ATP in phosphate transfer require Ca as the co-factor.
 - (B) The bone in human body is an inert and unchanging substance.
 - (C) Mg plays roles in neuromuscular function and interneuronal transmission.
 - (D) The daily requirement of Mg and Ca in the human body is estimated to be 0.2 0.3 g.
- Ans.
- The daily requirement in the human body has been estimated to be 200-300 mg (NCERT: s-Sol. block) Biological importance of magnesium and calcium.

81. Which of the following reactions will NOT give primary amine as the product?

(A)
$$CH_3CN \xrightarrow{(i) LAIH_4} Product$$

(B)
$$CH_3NC \xrightarrow{\text{(i) } LAIH_4 \\ \text{(ii) } H_3O_4^{\oplus}} Product$$

(C)
$$CH_3CONH_2 \xrightarrow{\text{(i) LiAIH}_4} Product$$

(D)
$$CH_3CONH_2 \xrightarrow{Br_2/KOH} Product$$

Ans. (B)

Sol. (A)
$$CH_3 - CN \xrightarrow{\text{(iLiAlH}_4 \\ \text{(i)} H_3O_4^0}} CH_3 - CH_2 - NH_2 \quad 1^{\circ}Amine$$

(B)
$$CH_3NC \xrightarrow{(i) LAHH_4} CH_3 - NH - CH_3$$
 2° Amine

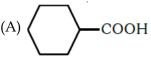
(C)
$$CH_3$$
- C - NH_2 $\xrightarrow{(ij)LiAlH_4}$ CH_3 - CH_2 - NH_2 1° Amine

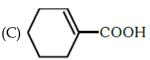
(D)
$$CH_3-C-NH_2 \xrightarrow{Br_2+OH^-} CH_3-NH_2$$
 1° Amine

82. The given compound

is an example of _____.

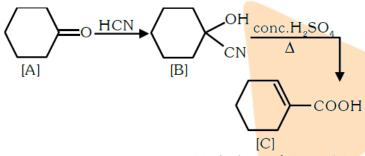
- (A) aryl halide
- (B) allylic halide
- (C) vinylic halide
- (D) benzylic halide


Ans. (B)


Sol. Allylic halide

83. Complete the following reaction:

$$\begin{array}{c}
 & OH \\
\hline
 & OH \\
\hline
 & ON \\
\hline
 & OH \\$$


[C] is ____

Ans. (C)

Sol.

(Hydrolysis of Cyanide)
& (dehydration of alcohol)

- **84.** Homoleptic complex from the following complexes is:
 - (A) Diamminechloridonitrito-N-platinum (II)
 - (B) Pentaamminecarbonatocobalt (III) chloride
 - (C) Triamminetriaquachromium (III) chloride
 - (D) Potassium trioxalatoaluminate (III)

Ans. (D)

- Sol. (A) $[Pt(NH_3)_2Cl(NO_2)]$
 - (B) $[Co(NH_3)_5(CO_3)]Cl$
 - (C) $[Cr(NH_3)_3(H_2O)_3]Cl_3$
 - (D) $K_3[Al(C_2O_4)_3]$

Option D contain all ligands are of same type i.e. why complex will be homoleptic.

- **85.** Weight (g) of two moles of the organic compound, which is obtained by heating sodium ethanoate with sodium hydroxide in presence of calcium oxide is :
 - (A) 32
- (B) 30
- (C) 18
- (D) 16

Ans. (A)

Sol.

O

I

2CH₃-C-O⁻Na⁺ NaOH + CaO

Sodium ethanoate

A

NaOH + CaO

Δ

2 CH

Weight = $2 \times 16 = 32 \text{ g}$

AcadXl

SECTION-B

86. Consider the following reaction

$$CH_2-O$$
 HI Δ $A + B$

Identify products A and B:-

(A)
$$A = \left(\begin{array}{c} \\ \\ \end{array} \right) - CH_2OH \text{ and } B = \left(\begin{array}{c} \\ \\ \end{array} \right) - I$$

(B)
$$A = \langle CH_2 I \text{ and } B = \langle CH_2 I \text{ or } B \rangle$$

(C)
$$A = CH_3$$
 and $B = I$

(D)
$$A = \left(\begin{array}{c} \\ \\ \end{array} \right) - CH_3 \text{ and } B = \left(\begin{array}{c} \\ \\ \end{array} \right) - OH$$

Ans. (B)

Sol.
$$CH_2-O$$
 CH_2-O CH_2-O CH_2+HO

87. Which amongst the following will be most readily dehydrated under acidic conditions?

$$(A)_{H_3C}$$
 H OH OH

$$(B) \xrightarrow{\text{NO}_2} \text{OH}$$

Ans. (A)

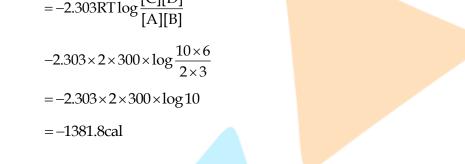
Sol. Due to presence of conjugation in product

$$\begin{array}{c|c} \mathsf{OH} & \mathsf{OH} \\ \mathsf{I} & \mathsf{I} \\ \mathsf{CH_3-CH-CH_2-CH-CH_3} & \xrightarrow{\mathsf{H}^+} \mathsf{CH_3-CH=CH-CH=CH_2} \end{array}$$

The equilibrium concentrations of the species in the reaction $A+B \rightleftharpoons C+D$ are 2, 3, 10 and 6 88.

mol L⁻¹, respectively at 300 K. ΔG° for the reaction is (R = 2 cal/mol K)

- (A) -137.26 cal
- (B) -1381.80 cal
- (C) -13.73 cal
- (D) 1372.60 cal


Ans. **(B)**

Sol. $A+B \longrightarrow C+D$

- $[A] = 2 \text{ mol } L^{-1}$
- $[B] = 3 \text{ mol } L^{-1}$
- $[C] = 10 \text{ mol } L^{-1}$
- $[D] = 6 \text{ mol } L^{-1}$

$$\Delta G^{\circ} = -2.303 \text{ RT log K}_{eq}$$

$$=-2.303RT log \frac{[C][D]}{[A][B]}$$

89. Given below are two statements:

Statement I: The nutrient deficient water bodies lead to eutrophication.

Statement II: Eutrophication leads to decrease in the level of oxygen in the water bodies.

In the light of the above statements, choose the **correct** answer from the options given below:

- (A) Both **Statement I** and **Statement II** are false
- (B) **Statement I** is correct but **Statement II** is false.
- (C) Statement I is incorrect but Statement II is true.
- (D) Both **Statement I** and **Statement II** are true.

Ans. (C)

Sol. Nutrient enriched water bodies lead to eutrophication.

90. Which amongst the following options is the correct relation between change in enthalpy and change in internal energy?

(A)
$$\Delta H = \Delta U + \Delta n_g RT$$

(B)
$$\Delta H - \Delta U = -\Delta n_g RT$$

(C)
$$\Delta H + \Delta U = \Delta n_g RT$$

(D)
$$\Delta H = \Delta U - \Delta n_g RT$$

Ans. (A)

Sol.
$$\Delta H = \Delta U + \Delta n_g RT$$

33

91. Match List-I with List-II:

List-I List-II

(Oxoacids of Sulphur) (Bonds)

A. Peroxodisul-I. Two S-OH, Four S=O, One S-O-S

phuric acid

B. Sulphuric acid II. Two S-OH, One S=O

C. Pyrosulphuric acid III. Two S-OH, Four S=O, One S-O-O-S

D. Sulphurous acid IV. Two S-OH, Two S=O

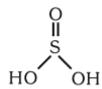
Choose the **correct** answer from the options given below:

(A) A-III, B-IV, C-I, D-II

(B) A-I, B-III, C-IV, D-II

(C) A-III, B-IV, C-II, D-I

(D) A-I, B-III, C-II, D-IV


Ans. (A)

Sol. (A) Peroxodisulphuric acid (H₂S₂O₈)

(B) Sulphuric acid (H₂SO₄)

(C) Pyrosulphuric acid (H₂S₂O₇)

(D) Sulphurous acid (H₂SO₃)

92. Identify the major product obtained in the following reaction:

$$+2[Ag(NH_3)_2]$$
 + 3 $-OH \xrightarrow{\Delta}$ major product

Ans. (B)

Sol.

- **93.** Pumice stone is an example of -
 - (A) gel
- (B) solid sol
- (C) foam
- (D) sol

Ans. (B

- **Sol.** Pumice stone is an example of solid state
- 94. The reaction that does NOT take place in blast furnace between 900K to 1500K temperature range during extraction of iron is :

(A) FeO + CO
$$\longrightarrow$$
 Fe + CO₂

(B) C + CO₂
$$\longrightarrow$$
 2CO

(C)
$$CaO + SiO_2 \longrightarrow CaSiO_3$$

(D)
$$Fe_2O_3 + CO \longrightarrow 2FeO + CO_2$$

Ans. (D)

Sol. Reaction

$$Fe_2O_3 + CO \longrightarrow 2FeO + CO_2$$

This reaction takes place at temperature (500 K - 800 K) not at (900 K to 1500 K)

- **95.** Which of the following statements are INCORRECT?
 - 1. All the transition metals except scandium form MO oxides which are ionic.
 - 2. The highest oxidation number corresponding to the group number in transition metal oxides is attained in Sc_2O_3 to Mn_2O_7 .
 - 3. Basic character increases from V₂O₃ to V₂O₄ to V₂O₅.
 - 4. V₂O₄ dissolves in acids to give salts.
 - 5. CrO is basic but Cr₂O₃ is amphoteric.

Choose the correct answer from the options given below:

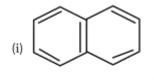
(A) 2 and 4 only

(B) 3 and 4 only

(C) 2 and 3 only

(D) 1 and 5 only

Ans. (B)

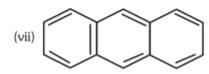

Sol. $3. \rightarrow \overset{+3}{V_2}O_3 \rightarrow \overset{+4}{V_2}O_4 \rightarrow \overset{+5}{V_2}O_5$

Acid Nature -

4. \longrightarrow V₂O₅ dissolve in acid to give VO_4^{3-} salts

This doesn't shown by V₂O₄

96. Consider the following compounds/species:



The number of compounds/species which obey Huckel's rule is _____

- (A) 6
- (B) 2
- (C) 5
- (D) 4

Ans. (D)

- **Sol.** Huckle's rule = $(4n + 2)\pi$ electrons Comp (i), (ii), (v), (vii) obey Huckle's rule
- 97. What fraction of one edge centred octahedral void lies in one unit cell of fcc?
 - (A) $\frac{1}{3}$
- (B) $\frac{1}{4}$
- (C) $\frac{1}{12}$
- (D) $\frac{1}{2}$

Ans. (B

Sol. Edge centered octahedral void is shared between four unit cells Per unit cell contribution is 1/4

98. Which complex compound is most stable?

 $(A) \left[Co(NH_3)_3 (NO_3)_3 \right]$

(B) $\left[\text{CoCl}_2(\text{en})_2\right]\text{NO}_3$

(C) $\left[\operatorname{Co}(\operatorname{NH}_3)_6\right]_2 \left(\operatorname{SO}_4\right)_3$

(D) $\left[\operatorname{Co}(\operatorname{NH}_3)_4(\operatorname{H}_2\operatorname{O})\operatorname{Br}\right](\operatorname{NO}_3)_2$

Ans. (B)

Sol. Due to Chelation effect of (en).

99. On balancing the given redox reaction,

$$aCr_2O_7^{2-} + bSO_3^{2-}(aq) + cH^+(aq) \rightarrow$$

$$2aCr^{3+}(aq) + bSO_4^{2-}(aq) + \frac{c}{2}H_2O(\ell)$$

the coefficients a, b and c are found to be, respectively -

(A) 3, 8, 1

(B) 1, 8, 3

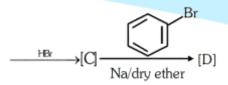
(C) 8, 1, 3

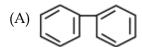
(D) 1, 3, 8

Ans. (D)

Sol. Reaction has to be balanced in acidic medium 'O' atoms are balanced by adding H_2O and then H-atom is balanced by adding H^+ ions and charge is balanced by e^{Θ} .

Oxidation:
$$SO_3^{2-} + H_2O \rightarrow SO_4^{2-} + 2H^+ + 2e^{\circ} \times 3$$


Reduction:
$$Cr_2O_7^{2-} + 14H^+ + 6e^{\odot} \rightarrow 2Cr^{3+} + 7H_2O$$


$$Cr_2O_7^{2-} + 3SO_3^{2-} + 8H^{\oplus} \rightarrow 2Cr^{3+} + 3SO_4^{2-} + 4H_2O$$

- a = 1
- b = 3
- c = 8

100. Identify the final product [D] obtained in the following sequence of reactions.

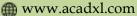
$$CH_{3}CHO \xrightarrow{i. LiAlH_{4}} [A] \xrightarrow{H_{2}SO_{4}} [B]$$

- (B) C_4H_{10}
- (D)

- (C) $HC \equiv C^{\odot}Na^{+}$
- Ans. (D

$$CH_3-CH=O \xrightarrow{LiAlH_4} CH_3-CH_2-OH \xrightarrow{H^+} CH_2=CH_2$$

Sol.


- **101.** Movement and accumulation of ions across a membrane against their concentration gradient can be explained by
 - (A) Facilitated Diffusion
 - (B) Passive Transport
 - (C) Active Transport
 - (D) Osmosis
- Ans. (C)
- **Sol.** Movement and accumulation of ions across a membrane against their concentration gradient can be explained by active transport. It uses energy to transport molecules from lower concentration to a higher concentration.
- **102.** Among 'The Evil Quartet', which one is considered the most important cause driving extinction of species?
 - (A) Over exploitation for economic gain
 - (B) Alien species invasions
 - (C) Co-extinctions
 - (D) Habitat loss and fragmentation
- Ans. (D)
- **Sol.** Habitat loss and fragmentation is the most important cause driving animals and plants to extinction.
- **103.** Identify the pair of heterosporous pteridophytes among the following :
 - (A) Selaginella and Salvinia
 - (B) Psilotum and Salvinia
 - (C) Equisetum and Salvinia
 - (D) Lycopodium and Selaginella
- Ans. (A)
- **Sol.** *Selaginella* and *Salvinia* are heterosporous pteridophytes. They produces two different kind of spores.

Psilotum, Lycopodium and Equisetum are homosporous pteridophytes.

- 104. Frequency of recombination between gene pairs on same chromosome as a measure of the distance between genes to map their position on chromosome, was used for the first time by
 - (A) Sutton and Boveri
 - (B) Alfred Sturtevant
 - (C) Henking
 - (D) Thomas Hunt Morgan
- Ans. (B)
- **Sol.** Alfred Sturtevant used the frequency of recombination between gene pairs on the same chromosome as a measure of the distance between genes and 'mapped' their position on the chromosome.

Sutton and Boveri proposed chromosomal theory of inheritance.

Henking discovered X-chromosome. Thomas Hunt Morgan proved chromosomal theory of inheritance and proposed the concept of linkage.

- **105.** What is the function of tassels in the corn cob?
 - (A) To trap pollen grains
 - (B) To disperse pollen grains
 - (C) To protect seeds
 - (D) To attract insects
- Ans. (A)
- **Sol.** Tassels in the com cob represents stigma and style which wave in the wind to trap pollen grains.
- **106.** Identify the **correct** statements:
 - A. Detrivores perform fragmentation.
 - B. The humus is further degraded by some microbes during mineralization.
 - C. Water soluble inorganic nutrients go down into the soil and get precipitated by a process called leaching.
 - D. The detritus food chain begins with living organisms.
 - E. Earthworms break down detritus into smaller particles by a process called catabolism.

Choose the **correct** answer from the options given below:

- (A) B, C, D only
- (B) C, D, E only
- (C) D, E, A only
- (D) A, B, C only

- Ans. (D)
- **Sol.** The detritus food chain begins with detritus that is dead organic matter. The saprotrophic bacteria and fungi breakdown detritus into simpler inorganic substances by a process called catabolism.
- 107. Given below are two statements: One is labelled as Assertion A and the other is labelled as

Reason R:

Assertion A: Late wood has fewer xylary elements with narrow vessels.

Reason R: Cambium is less active in winters.

In the light of the above statements, choose the **correct** answer from the options given below:

- (A) Both **A** and **R** are true but **R** is NOT the correct explanation of **A**
- (B) **A** is true but **R** is false
- (C) **A** is false but **R** is true
- (D) Both **A** and **R** are true and **R** is the correct explanation of **A**
- Ans. (D)
- **Sol.** In winter, the cambium is less active and forms fewer xylary elements that have narrow vessels, and this wood is called autumn wood or late wood.
- **108.** The process of appearance of recombination nodules occurs at which sub stage of prophase I in meiosis?
 - (A) Pachytene
- (B) Diplotene
- (C) Diakinesis
- (D) Zygotene

- Ans. (A)
- **Sol.** The process of recombination occurs at Pachytene stage of prophase I. This stage is characterised by the appearance of recombination nodules.

- **NEET** 109. Which of the following stages of meiosis involves division of centromere? (A) Metaphase II (B) Anaphase II (C) Telophase (D) Metaphase I **(B)** Ans. Sol. Splitting of centromere occurs during anaphase of mitosis or anaphase II of meiosis. During Metaphase I and II, chromosomes align at the equator. During telophase, chromosomes reach the respective poles. **110.** During the purification process for recombinant DNA technology, addition of chilled ethanol precipitates out (A) DNA (C) Polysaccharides (D) RNA (B) Histones Ans. (A) Sol. Option (1) is the correct answer as, during isolation of the genetic material, purified DNA ultimately precipitates out after the addition of chilled ethanol. Option (2) is not the answer as, proteins can be removed by treatment with proteases. Option (4) is not the answer as RNA can be removed by treatment with ribonuclease. 111. Family Fabaceae differs from Solanaceae and Liliaceae. With respect to the stamens, pick out the characteristics specific to family Fabaceae but not found in Solanaceae or Liliaceae. (A) Polyadelphous and epipetalous stamens (B) Monoadelphous and Monothecous anthers (C) Epiphyllous and Dithecous anthers (D) Diadelphous and Dithecous anthers Ans. (D) Sol. Fabaceae → Diadelphous and dithecous anther. Solanaceae \rightarrow Polyandrous, epipetalous and dithecous anther. Liliaceae \rightarrow Polyandrous, epiphyllous and dithecous anther. 112. Large, colourful, fragrant flowers with nectar are seen in (A) Bird pollinated plants (B) Bat pollinated plants (C) Wind pollinated plants
 - (D) Insect pollinated plants
 - (D) Ans.
 - Sol. Large, colourful, fragrant flowers with nectar attract biotic pollinators (insects), thus, they are seen in insect pollinated plants.
 - 113. Spraying of which of the following phytohormone on juvenile conifers helps hastening the maturity period, that leads early seed production?
 - (A) Gibberellic Acid

(B) Zeatin

(C) Abscisic Acid

(D) Indole-3-butyric Acid

Ans. (A)

Sol. Spraying juvenile conifers with gibberellins (GAs) hastens the maturity period, thus leading to early seed production.

- **114.** Axile placentation is observed in
 - (A) China rose, Beans and Lupin
 - (B) Tomato, Dianthus and Pea
 - (C) China rose, Petunia and Lemon
 - (D) Mustard, Cucumber and Primrose
- Ans. (C)
- **Sol.** China rose, Tomato, *Petunia* and Lemon show axile placentation.

Dianthus and Primrose show free central placentation.

Pea, Lupin and Beans show marginal placentation.

Cucumber and mustard show parietal placentation.

- **115.** Among eukaryotes, replication of DNA takes place in :
 - (A) S phase
 - (B) G₁ phase
 - (C) G₂ phase
 - (D) M phase
- Ans. (A)
- **Sol.** Replication of DNA takes place in S-phase of cell cycle in eukaryotes. Most of the cell organelles duplicate in G1 phase.
- 116. How many ATP and NADPH₂ are required for the synthesis of one molecule of Glucose during Calvin cycle?
 - (A) 18 ATP and 12 NADPH₂
 - (B) 12 ATP and 16 NADPH₂
 - (C) 18 ATP and 16 NADPH₂
 - (D) 12 ATP and 12 NADPH₂
- Ans. (A)
- **Sol.** For every CO₂ molecule entering the Calvin cycle, 3 molecules of ATP and 2 of NADPH₂ are required.

To make one molecule of glucose, 6 turns of the cycle are required. Thus, ATP and NADPH₂ molecules

required for synthesis of one molecule of glucose during Calvin cycle will be

$$\rightarrow 6 \times \begin{bmatrix} 3ATP \\ 2NADPH_2 \end{bmatrix} = \frac{18ATP \text{ and}}{12NADPH_2}$$

- 117. In gene gun method used to introduce alien DNA into host cells, microparticles of ______ metal are used.
 - (A) Zinc

(B) Tungsten or gold

(C) Silver

(D) Copper

- Ans. (B)
- **Sol.** Option (2) is the correct answer because in gene gun method, microparticles of tungsten or gold are used. Gold or tungsten are inert in nature so they do not alter the chemical composition of cells.

118. The thickness of ozone in a column of air in the atmosphere is measured in terms of: (A) Decibels (B) Decameter (C) Kilobase (D) Dobson units (D) Ans. Sol. The thickness of the ozone in a column of air from the ground to the top of the atmosphere is measured in terms of Dobson units (DU). Noise is measured in decibels. 119. Unequivocal proof that DNA is the genetic material was first proposed by (A) Alfred Hershey and Martha Chase (B) Avery, Macleoid and McCarthy (C) Wilkins and Franklin (D) Frederick Griffith Ans. Sol. The unequivocal proof that DNA is the genetic material came from the experiment of Alfred Hershey and Martha Chase. Avery, Macleoid and McCarty gave the biochemical characterisation of Transforming Principle. The transformation experiments by using *Pneumococcus* was conducted by Frederick Griffith. Wilkins and Franklin produced X-ray diffraction data of DNA. In the equation GPP-R = NPP GPP is Gross Primary Productivity **120.** NPP is Net Primary Productivity R here is _ (A) Respiratory quotient (B) Respiratory loss (C) Reproductive allocation (D) Photosynthetically active radiation (B) Ans. Sol. A considerable amount of GPP is utilised by plants in respiration. Gross primary productivity minus respiration losses (R), is the net primary productivity. So R = Respiratory loss What is the role of RNA polymerase III in the process of transcription in Eukaryotes? **121.** (A) Transcription of tRNA, 5S rRNA and snRNA (B) Transcription of precursor of mRNA (C) Transcription of only snRNAs (D) Transcription of rRNAs (28S, 18S and 5.8S) Ans. (A) Sol. In eukaryotes there are three major types of RNA polymerases. RNA polymerase I transcribes: 5.8S, 18S, 28S rRNAs RNA polymerase II transcribes: hnRNAs (precurssor of mRNA) RNA polymerase III transcribes: tRNAs, ScRNA, 5S rRNA and snRNA **122.** Which micronutrient is required for splitting of water molecule during photosynthesis? (A) Molybdenum (B) Magnesium (C) Copper (D) Manganese (D) Ans. Sol. Manganese plays a major role in the splitting of water to liberate oxygen during photosynthesis.

Copper is essential for the overall metabolism in plants.

Magnesium activates several enzymes involved in photosynthesis and respiration.

Molybdenum is included in nitrogen metabolism.

- **123.** In angiosperm, the haploid, diploid and triploid structures of a fertilized embryo sac sequentially are :
 - (A) Antipodals, synergids, and primary endosperm nucleus
 - (B) Synergids, Zygote and Primary endosperm nucleus
 - (C) Synergids, antipodals and Polar nuclei
 - (D) Synergids, Primary endosperm nucleus and zygote

Ans. (B)

Sol. Synergids are the cells of gametophyte and hence these are haploid Zygote is formed by fusion of two gametes and thus it is diploid.

Primary endosperm nucleus is formed by the fusion of diploid secondary nucleus with a male gamete. Therefore, it is triploid.

- **124.** The phenomenon of pleiotropism refers to
 - (A) Presence of two alleles, each of the two genes controlling a single trait
 - (B) A single gene affecting multiple phenotypic expression
 - (C) More than two genes affecting a single character
 - (D) Presence of several alleles of a single gene controlling a single crossover

Ans. (B)

- **Sol.** When a single gene affects multiple phenotypic expression, the gene is called pleiotropic gene and the phenomenon is called pleiotropism.
- **125.** Given below are two statements : One is labelled as **Assertion A** and the other is labelled as **Reason R**:

Assertion A : ATP is used at two steps in glycolysis.

Reason R : First ATP is used in converting glucose into glucose-6-phosphate and second ATP is used in

conversion of fructose-6-phosphate into fructose-1, 6-diphosphate.

In the light of the above statements, choose the **correct** answer from the options given below:

- (A) Both **A** and **R** are true but **R** is NOT the correct explanation of **A**.
- (B) **A** is true but **R** is false.
- (C) **A** is false but **R** is true.
- (D) Both **A** and **R** are true and **R** is the correct explanation of **A**.

Ans. (D)

Sol. ATP in glycolysis is used at two steps of conversion that are

Glucose → Glucose-6-phosphate

Fructose-6-phosphate → Fructose-1, 6-bisphosphate

The reason of the utilisation of ATP is for phosphorylation the substrates.

- **126.** Cellulose does not form blue colour with Iodine because
 - (A) It is a helical molecule
 - (B) It does not contain complex helices and hence cannot hold iodine molecules
 - (C) It breaks down when iodine reacts with it
 - (D) It is a disaccharide
- Ans. (B)
- **Sol.** Option (2) is the correct answer because cellulose does not contain complex helices and hence cannot hold iodine molecules.

Option (1), (3) and (4) are not correct as cellulose is a polysaccharide.

43

- **127**. Which hormone promotes internode/petiole elongation in deep water rice?
 - (A) Kinetin
- (B) Ethylene
- (C) 2, 4-D
- (D) GA3

- (B) Ans.
- Sol. Ethylene promotes rapid internode/petiole elongation in deep water rice plants.
- **128.** Expressed Sequence Tags (ESTs) refers to
 - (A) All genes that are expressed as proteins.
 - (B) All genes whether expressed or unexpressed.
 - (C) Certain important expressed genes.
 - (D) All genes that are expressed as RNA.
- Ans. (D)
- Sol. All the genes that are expressed as RNA are referred to as Expressed Sequence Tags (ESTs).
- 129. Given below are two statements:

Statement I: The forces generated transpiration can lift a xylem-sized column of water over 130 meters height.

Statement II: Transpiration cools leaf surfaces sometimes 10 to 15 degrees evaporative cooling. In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (A) Both **Statement I** and **Statement II** are incorrect
- (B) **Statement I** is correct but **Statement II** is incorrect
- (C) **Statement I** is incorrect but **Statement II** is correct
- (D) Both **Statement I** and **Statement II** are correct
- Ans. (D)
- Sol. Statement I is correct as measurements reveal that the forces generated by transpiration can create pressures sufficient to lift a xylem sized column of water up to 130 meters high. Statement II is also correct as transpiration cools leaf surfaces, sometimes 10 to 15 degrees, by evaporative cooling.
- **130.** Upon exposure to UV radiation, DNA stained with ethidium bromide will show
 - (A) Bright blue colour


(B) Bright yellow colour

(C) Bright orange colour

(D) Bright red colour

- Ans. (C)
- Sol. Option (3) is the correct answer because in recombinant DNA technology the separated DNA fragments can be visualised only after staining the DNA with a substance known as ethidium bromide followed by exposure to U.V. radiation. You can see bright orange coloured bands of DNA in an ethidium bromide stained gel exposed to U.V. light.
- 131. The historic Convention on Biological Diversity, 'The Earth Summit' was held in Rio de Janeiro in the year
 - (A) 1992
- (B) 1986
- (C) 2002
- (D) 1985

- Ans. (A)
- The historic convention on Biological Diversity, "The Earth Summit" was held in Rio de Janeiro Sol. in the year 1992. It called upon all nations to take appropriate measures for conservation of biodiversity and sustainable utilisation of its benefits.

- **132.** The reaction centre in PS II has an absorption maxima at
 - (A) 700 nm
- (B) 660 nm
- (C) 780 nm
- (D) 680 nm

- Ans. (D)
- **Sol.** In PS-I, the reaction centre chlorophyll *a* has an absorption peak at 700 nm, while in PS-II, reaction centre has an absorption maxima at 680 nm.
- 133. Given below are two statements : One labelled as **Assertion A** and the other labelled as **Reason** \mathbf{R} .

Assertion A: The first stage of gametophyte in the life cycle of moss is protonema stage.

Reason R: Protonema develops directly from spores produced in capsule.

In the light of the above statements, choose the **most appropriate** answer from options given below:

- (A) Both A and R are correct but R is NOT the correct explanation of A
- (B) **A** is correct but **R** is not correct
- (C) **A** is not correct but **R** is correct
- (D) Both **A** and **R** are correct and **R** is the correct explanation of **A**
- Ans. (D)
- **Sol.** The predominant stage of the life cycle of a moss is the gametophyte which consists of two stages.

The first stage is the protonema stage, which develops directly from a spore. Capsule of the sporophyte contains spore which gives rise to protonema. Thus, reason correctly explains the assertion.

- 134. In tissue culture experiments, leaf mesophyll cells are put in a culture medium to form callus. This phenomenon may be called as
 - (A) Dedifferentiation (B) Development
 - (C) Senescence

(D) Differentiation

- Ans. (A)
- **Sol.** In tissue culture experiments, leaf mesophyll cells are put in a culture medium to form callus. This phenomenon may be called as dedifferentiation.

Dedifferentiation is a phenomenon by which the living differentiated plant cells, that by now have lost the capacity to divide can regain the capacity of division under certain conditions.

135. Given below are two statements:

Statement I : Endarch and exarch are the terms often used for describing the position of secondary xylem in the plant body.

Statement II : Exarch condition is the most common feature of the root system.

In the light of the above statements, choose the **correct** answer from the options given below:

- (A) Both Statement I and Statement II are false
- (B) **Statement I** is correct but **Statement II** is false
- (C) **Statement I** is incorrect but **Statement II** is true
- (D) Both **Statement I** and **Statement II** are true
- Ans. (C)
- **Sol.** Endarch and exarch are the terms often used for describing the position of primary xylem in the plant body. Primary xylem is of two types protoxylem and metaxylem. On the basis of relative position of protoxylem and metaxylem in the organ the arrangement of primary xylem can be endarch or exarch. Exarch type of primary xylem is seen in roots. Therefore, Statement I is false and Statement II is true.

136. Identify the **correct** statements:

- A. Lenticels are the lens-shaped openings permitting the exchange of gases.
- B. Bark formed early in the season is called hard bark.
- C. Bark is a technical term that refers to all tissues exterior to vascular cambium.
- D. Bark refers to periderm and secondary phloem.
- E. Phellogen is single-layered in thickness.

Choose the correct answer from the options given below:

(A) A and D only

(B) A, B and D only

(C) B and C only

(D) B, C and E only

Ans. (A)

Sol. Lenticels are lens shaped opening permitting exchange of gases between the outer atmosphere and internal tissue of the stem.

Bark that is formed early in the season is called early or soft bark. Towards the end of the season late or hard bark is formed.

Bark is non-technical term that refer to all tissues exterior to vascular cambium.

Bark refers to a number of tissue types, viz periderm and secondary phloem.

Phellogen is couple of layers thick Therefore, only statement A and D are correct.

137. Match **List I** with **List II**:

List I List II

A. Cohesion I. More attraction in liquid phase

B. Adhesion II. Mutual attraction among water molecules

C. Surface tension III. Water loss in liquid phase

D. Guttation IV. Attraction towards polar surfaces Choose the **correct** answer from the options given below :

(A) A – IV, B – III, C – II, D – I

(B) A – III, B – I, C – IV, D – II

(C) A – II, B – I, C – IV, D – III

(D) A - II, B - IV, C - I, D - III

Ans. (D)

Sol. Cohesion represents mutual attraction between water molecules. Adhesion represents attraction of water molecules to polar surfaces Surface tension represents water molecules are attracted to each other in the liquid phase more than to water in the gas phase. Guttation represent loss of water in liquid phase.

Thus, option (4) is correct.

138. Match **List I** with **List II**:

List I List II

A. M Phase

I. Proteins are synthesized

B. G2 Phase II. Inactive phase

C. Quiescent stage III. Interval between mitosis and initiation of DNA

replication

D. G1 Phase IV. Equational division

Choose the correct answer from the options given below:

(A) A-IV, B-II, C-I, D-III

(B) A-IV, B-I, C-II, D-III

(C) A-II, B-IV, C-I, D-III

(D) A-III, B-II, C-IV, D-I

Ans. (B)

Sol. M phase or mitosis is the phase where the actual cell division occurs. Mitosis is also called equational division.

During G₂ phase DNA synthesis stops but cell synthesis RNA, proteins, etc. for next phase.

Quiescent stage is inactive phase in which non-dividing cells enters.

G₁ phase is the interval between mitosis and initiation of DNA replication.

Therefore, option (B) is correct.

- **139.** Which of the following statements are correct about Klinefelter's Syndrome?
 - A. This disorder was first described by Langdon Down (1866).
 - B. Such an individual has overall masculine development. However, the feminine development is also expressed.
 - C. The affected individual is short statured.
 - D. Physical, psychomotor and mental development is retarded.
 - E. Such individuals are sterile.

Choose the **correct** answer from the options given below:

- (A) C and D only
- (B) B and E only
- (C) A and E only
- (D) A and B only

Ans. (B)

Sol. Klinefelter's syndrome is caused due to the presence of an additional copy of X-chromosome resulting into a karyotype of 47, XXY. Such an individual has overall masculine development, however, the feminine development is also expressed. Such individuals are sterile. Thus, statement B and E are correct regarding Klinefelter's syndrome.

Statement A, C and D are incorrect w.r.t. Klinefelter's syndrome as they are associated with Down's syndrome.

140. Given below are two statements:

Statement I: Gause's 'Competitive Exc<mark>lusion Principle' states that</mark> two closely related species competing for the same resources cannot co-exist indefinitely and competitively inferior one will be eliminated eventually.

Statement II: In general, carnivores are more adversely affected by competition than herbivores. In the light of the above statements, choose the **correct** answer from the options given below:

- (A) Both **Statement I** and **Statement II** are false.
- (B) **Statement I** is correct **Statement II** is false.
- (C) **Statement I** is incorrect but **Statement II** is true.
- (D) Both **Statement I** and **Statement II** are true.

Ans. (B

Sol. Gause's 'Competitive Exclusion Principle' states that two closely related species competing for the same resources cannot co-exist indefinitely and the competitively inferior one will be eliminated eventually. Thus, statement I is correct.

Statement II is incorrect as in general, herbivores and plants appear to be more adversely affected by competition than carnivores.

141. How many different proteins does the ribosome consist of?

- (A) 60
- (B) 40
- (C) 20
- (D) 80

Ans. (D)

- **Sol.** The ribosome consists of structural RNAs and about 80 different proteins.
- 142. Which of the following combinations is required for chemiosmosis?
 - (A) Membrane, proton pump, proton gradient, NADP synthase
 - (B) Proton pump, electron gradient, ATP synthase
 - (C) Proton pump, electron gradient, NADP synthase
 - (D) Membrane, proton pump, proton gradient, ATP synthase

Ans. (D)

Sol. Chemiosmosis requires a membrane, a proton pump, a proton gradient and ATP synthase.

- **143.** Which one of the following statements is **NOT** correct?
 - (1) Algal blooms caused by excess of organic matter in water improve water quality and promote fisheries
 - (2) Water hyacinth grows abundantly in eutrophic water bodies and leads to an imbalance in the ecosystem dynamics of the water body
 - (3) The amount of some toxic substances of industrial waste water increases in the organisms at successive trophic levels
 - (4) The micro-organisms involved in biodegradation of organic matter in a sewage polluted water body

consume a lot of oxygen causing the death of aquatic organisms

Ans. (A)

Sol. Algal bloom imparts a distinct colour to the water bodies. It causes deterioration of the water quantity and fish mortality.

144. Match **List I** with **List II**:

List I(Interaction) List II (Species A and B)

A. Mutualism

I. +(A), 0(B)B. Commensalism

II. -(A), 0(B)III. +(A), -(B)

D. Parasitism IV. +(A), +(B)

Choose the **correct** answer from the opt<mark>ions given bel</mark>ow:

(A) A-IV, B-I, C-II, D-III
(B) A-IV, B-III, C-I, D-II

(C) A-III, B-I, C-IV, D-II (D) A-IV, B-II, C-I, D-III

Ans. (A)

- **Sol.** (+, +) Mutualism: In this interaction, both the interacting species are benefitted.
 - (+, 0) Commensalism : Only one species is benefitted and the other species remains unharmed.
 - (-, 0) Amensalism : Neither species is benefitted. One remains unharmed and the other is harmed.
 - (+, -) Parasitism : One species is benefitted and other is negatively effected.
- **145.** Main steps in the formation of Recombinant DNA are given below. Arrange these steps in a correct sequence.
 - A. Insertion of recombinant DNA into the host cell
 - B. Cutting of DNA at specific location by restriction enzyme
 - C. Isolation of desired DNA fragment
 - D. Amplification of gene of interest using PCR

Choose the correct answer from the options given below:

(A) C, A, B, D

(B) C, B, D, A

(C) B, D, A, C

(D) B, C, D, A

Ans. (D)

Sol. The correct answer is option (4) because recombinant DNA technology involves several steps in specific sequence such as isolation of DNA, fragmentation of DNA by restriction endonucleases, isolation of desired DNA fragment, ligation of the DNA fragment into a vector, transferring the recombinant DNA into the host, culturing the host cells in a medium at large scale and extraction of the desired product.

	List I		List II
A.	Iron	I.	Synthesis of auxin
B.	Zinc	II.	Component of nitrate reductase
C.	Boron	III.	Activator of catalase
D.	Molybdenum	IV.	Cell elongation and differentiation

Choose the correct answer from the options given below:

(A) A-II, B-III, C-IV, D-I

(B) A-III, B-I, C-IV, D-II

(C) A-II, B-IV, C-I, D-III

(D) A-III, B-II, C-I, D-IV

Ans. (B)

Sol. Iron activates catalase enzyme.

Zinc is needed in the synthesis of auxin.

Boron is required for cell elongation and cell differentiation.

Molybdenum is component of nitrogenase and nitrate reductase enzyme.

Therefore, option (2) is correct.

147. Match List I with List II:

List I List II

A. Oxidative decarboxylation I. Citrate synthase

B. Glycolysis II. Pyruvate dehydrogenase

C. Oxidative phosphorylation III. Electron transport system

D. Tricarboxylic acid cycle IV. EMP pathway

Choose the correct answer from the options given below:

(A) A - II, B - IV, C - I, D - III (B) A - III, B - I, C - II, D - IV

(C) A - II, B - IV, C - III, D - I (D) A - III, B - IV, C - II, D - I

Ans. (C)

Pyruvate, which is formed by the glycolytic catabolism of carbohydrates in the cytosol, after it Sol. enters mitochondrial matrix undergoes oxidative decarboxylation by a complex set of reactions catalyzed by pyruvate dehydrogenase.

The scheme of glycolysis was given by Gustav Embden, Otto Meyrhof and J. Parnas, and is often referred to as the EMP pathway.

In electron transport system, the energy of oxidation-reduction is utilized for the production of proton gradient required for phosphorylation, thus, this process is also called oxidative phosphorylation.

The TCA (tricarboxylic acid cycle) starts with the condensation of acetyl group with oxaloacetic acid (OAA) and water to yield citric acid. The reaction is catalysed by the enzyme citrate synthase. Thus, option (C) is correct.

148. Given below are two statements: One is labelled as **Assertion A** and the other is labelled as Reason R.

Assertion A: In gymnosperms the pollen grains are released from the microsporangium and carried by air currents.

Reason R: Air currents carry the pollen grains to the mouth of the archegonia where the male gametes are discharged and pollen tube is not formed.

In the light of the above statements, choose the **correct** answer from the options given below:

- (A) Both **A** and **R** are true but **R** is NOT the correct explanation of **A**.
- (B) **A** is true but **R** is false.
- (C) **A** is false but **R** is true
- (D) Both **A** and **R** are true and **R** is the correct explanation of **A**.

Ans. **(B)**

- Sol. Assertion is correct but reason is false as in gymnosperms the pollen grains are released from the microsporangium and they are carried in air currents. They come in contact with the opening of the ovules borne on megasporophylls. The *pollen tube* carrying the male gametes grows towards archegonia in the ovules and discharge their contents near the mouth of the archegonia.
- 149. Given below are two statements: One is labelled as **Assertion A** and the other is labelled as Reason R:

Assertion A: A flower is defined as modified shoot wherein the shoot apical meristem changes to floral meristem.

Reason R: Internode of the shoot gets condensed to produce different floral appendages laterally at successive node instead of leaves.

In the light of the above statements, choose the **correct** answer from the options given below:

- (A) Both **A** and **R** are true but **R** is NOT the correct explanation of **A**
- (B) **A** is true but **R** is false
- (C) **A** is false but **R** is true
- (D) Both **A** and **R** are true and **R** is the correct explanation of **A**

(D) Ans.

Sol. A flower is a modified shoot wherein the shoot apical meristem changes to floral meristem. Internodes do not elongate and the axis gets condensed. The apex produces different kinds of floral appendages laterally at the successive nodes instead of leaves.

Therefore, both **A** and **R** are true and **R** is correct explanation of **A**.

- Melonate inhibits the growth of pathogenic bacteria by inhibiting the activity of **150.**
 - (A) Amylase
 - (B) Lipase
 - (C) Dinitrogenase
 - (D) Succinic dehydrogenase

Ans. (D)

Sol. Option (4) is correct answer of this question because malonate is a competitive inhibitor of enzyme succinate dehydrogenase. Inhibition of succinic dehydrogenase by malonate occurs due to close resemblance of malonate with substrate succinate in structure. Competitive inhibitors are often used in the control of bacterial pathogens.

151. Given below are two statements:

Statement I: A protein is imagined as a line, the left end represented by first amino acid (C-terminal) and the right end represented by last amino acid (N-terminal).

Statement II: Adult human haemoglobin, consists of 4 subunits (two subunits of α type and two subunits of β type.)

In the light of the above statements, choose the correct answer from the options given below:

- (A) Both Statement I and Statement II are false.
- (B) Statement I is true but Statement II is false.
- (C) Statement I is false but Statement II is true.
- (D) Both Statement I and Statement II are true

Ans. (C)

Sol. The correct answer is option (3) as a protein is imagined as a line, the left end represented by the first amino acid and the right end is represented by the last amino acid. The first amino acid is also called N- terminal amino acid. The last amino acid is called the C-terminal amino acid.

- **152.** Radial symmetry is NOT found in adults of phylum _____.
 - (A) Hemichordata

(B) Coelenterata

(C) Echinodermata

(D) Ctenophora

Ans. (A)

- **Sol.** Option (A) is the correct answer because hemichrodates are bilaterally symmetrical animals.
 - Option (B) is not the answer because coelenterates are radially symmetrical organisms.
 - Option (C) is not the answer because adult echinoderms are radially symmetrical in adult stage.
 - Option (D) is not the answer because ctenophores are radially symmetrical organisms.
- 153. Which of the following statements are correct regarding female reproductive cycle?
 - A. In non-primate mammals cyclical changes during reproduction are called oestrus cycle.
 - B. First menstrual cycle begins at puberty and is called menopause.
 - C. Lack of menstruation may be indicative of pregnancy.
 - D. Cyclic menstruation extends between menarche and menopause.

Choose the most appropriate answer from the options given below:

- (A) A and B only
- (B) A, B and C only
- (C) A, C and D only
- (D) A and D only

Ans. (C)

Sol. The correct answer is option (3) as first menstrual cycle that begins at puberty is called menarche.

Cyclic menstruation is an indicator of normal reproductive phase and extends between menarche and menopause.

In primates, cyclical changes during reproduction are called menstrual cycle.

154. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: Nephrons are of two types: Cortical & Juxta medullary, based on their relative position in cortex and medulla.

Reason R: Juxta medullary nephrons have short loop of Henle whereas, cortical nephrons have longer loop of Henle.

In the light of the above statements, choose the correct answer from the options given below:

- (A) Both A and R are true but R is NOT the correct explanation of A.
- (B) A is true but R is false.
- (C) A is false but R is true.
- (D) Both A and R are true and R is the correct explanation of A.

Ans. (B)

Sol. The correct answer is option (2) because Assertion is true as there are two types of nephrons, *i.e.*, cortical nephrons and juxtamedullary nephrons based on their relative position in the cortex and medulla. Reason is not correct as loop of Henle in juxtamedullary nephrons is very long and runs deep into the medulla. Therefore, Assertion is true but Reason is false.

155. Match List I with List II with respect to human eye.

List I List II

A. Fovea I. Visible coloured portion of eye that regulates

diameter of pupil.

B. Iris II. External layer of eye formed of dense

connective tissue.

C. Blind spot III. Point of greatest visual acuity or resolution.

D. Sclera IV. Point where optic nerve leaves the eyeball and

photoreceptor cells are absent.

Choose the correct answer from the options given below:

(A) A-IV, B-III, C-II, D-I

(B) A-I, B-IV, C-III, D-II

(C) A-II, B-I, C-III, D-IV

(D) A-III, B-I, C-IV, D-II

Ans. (D)

Sol. Option (4) is the correct answer because

- (i) Fovea is the point of greatest visual acuity or resolution.
- (ii) Iris is the visible coloured portion of the eye that regulates diameter of pupil.
- (iii) Blind spot is the point where optic nerve leaves the eye-ball and photoreceptor cells are absent.
- (iv) Sclera is the external layer of eye formed of dense connective tissue.

156. Which of the following are NOT considered as the part of endomembrane system?

A. Mitochondria

B. Endoplasmic reticulum

C. Chloroplasts

D. Golgi complex

E. Peroxisomes

Choose the most appropriate answer from the options given below:

(A) A, C and E only

(B) A and D only

(C) A, D and E only

(D) B and D only

Ans. (A)

Sol. The endomembrane system include endoplasmic reticulum (ER), golgi complex, lysosomes and vacuoles.

Since the functions of the mitochondria, chloroplast and peroxisomes are not coordinated with the above components, these are not considered as part of endomembrane system.

- 157. Broad palm with single palm crease is visible in a person suffering from-
 - (A) Turner's syndrome
 - (B) Klinefelter's syndrome
 - (C) Thalassemia
 - (D) Down's syndrome
- Ans. (D)
- **Sol.** Down's syndrome is caused by an additional copy of chromosome number 21. Its symptoms include–
 - a. Broad palm with characteristic palm crease
 - b. Short statured with small round head
 - c. Furrowed tongue and partially open mouth, etc.
- **158.** Match List I with List II.

List I List II

A. P-wave I. Beginning of systole

B. Q-wave II. Repolarisation of ventricles

C. QRS complex III. Depolarisation of atria

D. T-wave IV. Depolarisation of ventricles

Choose the correct answer from the options given below:

- (A) A-IV, B-III, C-II, D-I
- (B) A-II, B-IV, C-I, D-III
- (C) A-I, B-II, C-III, D-IV
- (D) A-III, B-I, C-IV, D-II
- Ans. (D)
- **Sol.** The correct answer is option (4) as in a standard ECG, P-wave represents the electrical excitation (or depolarisation) of the atria which leads to the contraction of both the atria.
 - QRS complex represents the depolarisation of ventricles which initiates the ventricular contraction.
 - T-wave represents the return of the ventricles from excited to normal state.
- 159. Which one of the following common sexually transmitted diseases is completely curable when detected early and treated properly?
 - (A) Gonorrhoea
 - (B) Hepatitis-B
 - (C) HIV Infection
 - (D) Genital herpes
- Ans. (A)
- **Sol.** The correct answer is option (1) because except for hepatitis-B, genital herpes and HIV infection other STIs are completely curable if detected early and treated properly.

Gonorrhoea is a bacterial disease which can be treated and cured completely, other diseases mentioned are viral diseases.

List I List II

(Cells) (Secretion)
A. Peptic cells I. Mucus

B. Goblet cells II. Bile juice

C. Oxyntic cells III. Proenzyme pepsinogen

D. Hepatic cells IV. HCl and intrinsic factor for absorption of vitamin B12

Choose the correct answer from the options given below:

(A) A-II, B-I, C-III, D-IV

(B) A-III, B-I, C-IV, D-II

(C) A-II, B-IV, C-I, D-III

(D) A-IV, B-III, C-II, D-I

Ans. (B)

Sol. Option (2) is the correct answer because gastric glands have three major types of cells namely-

- (i) Mucus neck cells which secrete mucus
- (ii) Peptic or chief cells which secrete the proenzyme pepsinogen
- (iii) Parietal or oxyntic cells which secrete HCl and intrinsic factor for absorption of vitamin B12.

161. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: Endometrium is necessary for implantation of blastocyst.

Reason R: In the absence of fertilization, the corpus luteum degenerates that causes disintegration of endometrium.

In the light of the above statements, choose the correct answer from the options given below:

- (A) Both A and R are true but R is NOT the correct explanation of A.
- (B) A is true but R is false.
- (C) A is false but R is true.
- (D) Both A and R are true and R is the correct explanation of A.

Ans. (A)

Sol. Option (1) is the correct answer because both Assertion and Reason are true.

Implantation is embedding of the blastocyst into endometrium of uterus.

Correct explanation of reason is Corpus luteum secretes large amount of progesterone which is essential for maintenance of endometrium of uterus. In absence of fertilisation, the corpus luteum degenerates hence the decrease in the level of progesterone hormone will cause disintegration of ndometrium leading to menstruation.

- **162.** Which of the following is not a cloning vector?
 - (A) YAC
- (B) pBR322
- (C) Probe
- (D) BAC

Ans. (C)

Sol. Option (3) is correct answer because a single stranded DNA or RNA tagged with a radioactive molecule is called a probe and it helps in the detection of mutated gene.

Option (1), (2) and (4) are not correct because YAC, BAC, pBR322 are vectors.

Match List I with List II. 163.

> List I List II

A. Taenia I. Nephridia

B. Paramoecium II. Contractile vacuole

C. Periplaneta III. Flame cells

D. Pheretima IV. Urecose gland

Choose the correct answer from the options given below:

(A) A-I, B-II, C-IV, D-III

(B) A-III, B-II, C-IV, D-I

(C) A-II, B-I, C-IV, D-III

(D) A-I, B-II, C-III, D-IV

(B) Ans.

Sol. Option (2) is the correct answer because protonephridia or flame cells are the excretory structures in platyhelminthes. Nephridia are the tubular excretory structures of earthworms (Pheretima) and other annelids. Single celled organisms like Paramoecium have contractile vacuoles for excretion. Urecose glands are present in cockroach.

164. Given below are two statements:

Statement I: Ligaments are dense irregular tissue.

Statement II: Cartilage is dense regular tissue.

In the light of the above statements, choose the correct answer from the options given below:

- (A) Both Statement I and Statement II are false
- (B) Statement I is true but Statement II is false
- (C) Statement I is false but Statement II is true
- (D) Both Statement I and Statement II are true

Ans. (A)

Sol. Option (1) is the correct answer because ligament is an example of dense regular connective tissue so Statement I is incorrect and cartilage is an example of specialised connective tissue and not dense regular tissue. Therefore Statement II is also incorrect.

- 165. Which of the following functions is carried out by cytoskeleton in a cell?
 - (A) Protein synthesis
 - (B) Motility
 - (C) Transportation
 - (D) Nuclear division

(B) Ans.

An elaborate network of filamentous proteinaceous structures consisting of microtubules, Sol. microfilaments and intermediate filaments present in cytoplasm is collectively referred to as the cytoskeleton. It is involved in many functions such as mechanical support, motility, maintenance of the shape of the cell.

List I List II

A. Gene 'a'

I. β-galactosidase

B. Gene 'y' II. Transacetylase

C. Gene 'i' III. Permease

D. Gene 'z'

IV. Repressor protein

Choose the correct answer from the options given below:

(A) A-II, B-III, C-IV, D-I (B) A-III, B-IV, C-I, D-II

(C) A-III, B-I, C-IV, D-II (D) A-II, B-I, C-IV, D-III

Ans. (A)

Sol. In a *lac* operon,

Gene a codes for enzyme transacetylase.

Gene y codes for enzyme permease.

Gene i codes for repressor protein

Gene z codes for enzyme β-galactosidase.

- **167.** Which of the following statements is correct?
 - (A) Biomagnification refers to increase in concentration of the toxicant at successive trophic levels.
 - (B) Presence of large amount of nutrients in water restricts 'Algal Bloom'
 - (C) Algal Bloom decreases fish mortality
 - (D) Eutrophication refers to increase in domestic sewage and waste water in lakes.

Ans. (A)

Sol. Increase in the concentration of the toxicant at successive trophic level is called biomagnification.

Large amount of nutrients in water promotes growth of algal bloom. Algal bloom increases fish mortality.

Eutrophication refers to the natural aging of a lake by nutrient enrichment of its water.

168. Which one of the following symbols represents mating between relatives in human pedigree analysis?

Ans. (A)

Sol. The symbol representing mating between relatives (consanguineous mating) in human pedigree analysis is

- 169. Once the undigested and unabsorbed substances enter the caecum, their backflow is prevented
 - (A) Ileo-caecal valve
 - (B) Gastro-oesophageal sphincter
 - (C) Pyloric sphincter
 - (D) Sphincter of Oddi

Ans. (A)

Sol. Option (1) is the correct answer because the undigested food (faeces) enters into caecum of the large intestine through ileo-caecal valve, which prevents the backflow of the faecal matter. Option (2) is not the answer because a muscular sphincter i.e., the gastro-oesophageal sphincter regulates the opening of oesophagus into the stomach.

Option (3) is not the answer because pyloric sphincter regulates the opening in between stomach and duodenum.

Option (4) is not the answer because the opening of common hepato-pancreatic duct is guarded by sphincter of Oddi.

- **170.** Which one of the following techniques does not serve the purpose of early diagnosis of a disease for its early treatment?
 - (A) Serum and Urine analysis
 - (B) Polymerase Chain Reaction (PCR) technique
 - (C) Enzyme Linked Immuno-Sorbent Assay (ELISA) technique
 - (D) Recombinant DNA Technology

Ans. (A)

Sol. The correct answer is option (1) because using conventional methods of diagnosis like serum and urine analysis, etc, do not help in early diagnosis. Recombinant DNA technology, Polymerase Chain Reaction [PCR] and Enzyme Linked Immuno-Sorbent Assay (ELISA) are some of the techniques that serve the purpose of early diagnosis.

171. Given below are two statements:

Statement I: Low temperature preserves the enzyme in a temporarily inactive state whereas high temperature destroys enzymatic activity because proteins are denatured by heat.

Statement II: When the inhibitor closely resembles the substrate in its molecular structure and inhibits the activity of the enzyme, it is known as competitive inhibitor.

In the light of the above statements, choose the correct answer from the options given below:

- (A) Both Statement I and Statement II are false.
- (B) Statement I is true but Statement II is false.
- (C) Statement I is false but Statement II is true.
- (D) Both Statement I and Statement II are true.

Ans. (D)

- Sol. The correct answer is option (4) as low temperature preserves the enzyme in a temporarily inactive state whereas high temperature destroys enzymatic activity because proteins are denatured by heat.
 - Competitive inhibitor due to its close structural similarity with the substrate, competes with the substrate for the substrate-binding site of the enzyme.

List I (Type of Joint) List II (Found between)

A. Cartilaginous Joint I. Between flat skull bones

B. Ball and Socket Joint II. Between adjacent vertebrae in vertebral column

C. Fibrous Joint III. Between carpal and metacarpal of thumb

D. Saddle Joint IV. Between Humerus and Pectoral

girdle

Choose the correct answer from the options given below:

(A) A-II, B-IV, C-I, D-III

(B) A-I, B-IV, C-III, D-II

(C) A-II, B-IV, C-III, D-I

(D) A-III, B-I, C-II, D-IV

Ans. (A)

Sol. Option (A) is the correct answer beca<mark>use cartil</mark>aginous joint is present in between the adjacent vertebrae in the vertebral column.

Option (B) is not the answer because cartilaginous joint is not present between flat skull bones.

Option (C) is not the answer because fibrous joint is not present in between the carpal and metacarpal of thumb.

Option (D) is not the answer because saddle joint is not present in between humerus and pectoral girdle.

173. Given below are two statements:

Statement I: Vas deferens receives a duct from seminal vesicle and opens into urethra as the ejaculatory duct.

Statement II: The cavity of the cervix is called cervical canal which along with vagina forms birth canal.

In the light of the above statements, choose the correct answer from the options given below:

- (A) Both Statement I and Statement II are false.
- (B) Statement I is correct but Statement II is false.
- (C) Statement I is incorrect but Statement II is true.
- (D) Both Statement I and Statement II are true.

Ans. (D)

Sol. Option (4) is the correct answer to this question because statement I and statement II both are correct.

Vas deferens receives a duct from seminal vesicle and opens into urethra as the ejaculatory duct. The cavity of cervix is called cervical canal which along with vagina forms the birth canal.

174. In which blood corpuscles, the HIV undergoes replication and produces progeny viruses?

(A) B-lymphocytes (B) Basophils

phils (C) Eosinophils

(D) TH cells

Ans. (D)

Sol. The correct answer is option (D) because HIV enters into helper T-lymphocytes (TH), replicates and produces progeny viruses. The progeny viruses released into blood attack other helper lymphocytes.

List I List II

A. Heroin I. Effect on cardiovascular system

B. Marijuana II. Slow down body function

C. Cocaine III. Painkiller

D. Morphine IV. Interfere with transport of dopamine

Choose the correct answer from the options given below:

(A) A-I, B-II, C-III, D-IV

(B) A-IV, B-III, C-II, D-I

(C) A-III, B-IV, C-I, D-II

(D) A-II, B-I, C-IV, D-III

Ans. (D)

Sol. The correct answer is option (4) as

- Heroin belongs to the category of opioids and it is a depressant that slows down body functions.
- Marijuana is known for its effect on the cardiovascular system of the body.
- Cocaine interferes with the transport of the neurotransmitter dopamine.

 Morphine is used is a sedative and painkiller.

176. Vital capacity of lung is ______

(A) IRV + ERV + TV + RV

(B) IRV + ERV + TV - RV

(C) IRV + ERV + TV

(D) IRV + ERV

Ans. (C)

Sol. Option (C) is the correct answer because vital capacity is the maximum volume of air a person can breathe in after forced expiration. This includes ERV, TV and IRV.

- 177. Select the correct group/set of Australian Marsupials exhibiting adaptive radiation.
 - (A) Numbat, Spotted cuscus, Flying phalanger
 - (B) Mole, Flying squirrel, Tasmanian tiger cat
 - (C) Lemur, Anteater, Wolf
 - (D) Tasmanian wolf, Bobcat, Marsupial mole

Ans. (A)

Sol. Option (A) is the correct answer because numbat, spotted cuscus and flying phalanger are Australian marsupials exhibiting adaptive radiation.

Option (B) is incorrect because mole and flying squirrel are placental mammals.

Option (C) is incorrect because lemur and wolf are placental mammals.

Option (D) is incorrect because bobcat is a placental mammal.

List I List II
A. CCK I. Kidney
B. GIP II. Heart

C. ANF III. Gastric gland D. ADH IV. Pancreas

Choose the correct answer from the options given below:

(A) A-III, B-II, C-IV, D-I

(B) A-II, B-IV, C-I, D-III

(C) A-IV, B-II, C-III, D-I

(D) A-IV, B-III, C-II, D-I

Ans. (D)

Sol. The correct answer is option (4) as

- Cholecystokinin (CCK) acts on both gall bladder and pancreas and stimulates the secretion of bile juice and pancreatic enzymes respectively.
- GIP inhibits gastric secretion and motility.
- Atrial Natriuretic Factor (ANF) is released from the atrial wall of our heart.
- Anti-diuretic hormone (ADH) acts mainly on the kidney and stimulates resorption of water and electrolytes by the distal tubules.
- 179. Given below are two statements: one is labelled as Assertion A and other is labelled as Reason R. Assertion A: Amniocentesis for sex determination is one of the strategies of Reproductive and Child Health Care Programme.

Reason R: Ban on amniocentesis checks increasing menace of female foeticide.

In the light of the above statements, choose the correct answer from the options given below.

- (A) Both A and R are true and R is NOT the correct explanation of A.
- (B) A is true but R is false.
- (C) A is false but R is true.
- (D) Both A and R are true and R is the correct explanation of A.

Ans. (C)

Sol. The correct answer is option (3) as 'Reproductive and Child Health Care (RCH) programme' deals with creating awareness among people about various reproduction related aspects and providing facilities and support for building up a reproductively healthy society.

Amniocentesis is basically used to test for the presence of certain genetic disorders such as Down's syndrome, haemophilia, *etc.*, to determine the survivability of the foetus.

Amniocentesis is not a sex determination technique in India and is not a strategy of RCH.

180. Given below are two statements:

Statement I: RNA mutates at a faster rate.

Statement II: Viruses having RNA genome and shorter life span mutate and evolve faster. In the light of the above statements, choose the correct answer from the options given below:

- (A) Both Statement I and Statement II are false.
- (B) Statement I is true but Statement II is false.
- (C) Statement I is false but Statement II is true.
- (D) Both Statement I and Statement II are true.

Ans. (D)

Sol. RNA being unstable, mutate at a faster rate. Consequently, viruses having RNA genome and having shorter life span mutate and evolve faster.

List I List II

A. Vasectomy I. Oral method

B. Coitus interruptus II. Barrier method

C. Cervical caps III. Surgical method
D. Saheli IV. Natural method

Choose the correct answer from the options given below:

(A) A-III, B-IV, C-II, D-I

(B) A-II, B-III, C-I, D-IV

(C) A-IV, B-II, C-I, D-III

(D) A-III, B-I, C-IV, D-II

Ans. (A)

Sol. Option (1) the correct answer because

- (i) Vasectomy is a surgical method of contraception
- (ii) Coitus interruptus is a natural method of contraception
- (iii) Cervical cap is a barrier method of contraception
- (iv) Saheli is an oral method of contraception which is a non-steroidal pill

182. Given below are two statements:

Statement I: Electrostatic precipitator is most widely used in thermal power plant.

Statement II: Electrostatic precipitator in thermal power plant removes ionising radiations.

In the light of the above statements, choose the *most appropriate* answer from the options given below:

- (A) Both Statement I and Statement II are incorrect.
- (B) Statement I is correct but Statement II is incorrect.
- (C) Statement I is incorrect but Statement II is correct.
- (D) Both Statement I and Statement II are correct.

Ans. (B)

Sol. Electrostatic precipitator is most widely used in thermal power plants.

It can remove over 99 percent particulate matter present in the exhaust from a thermal power plant.

183. Given below are two statements:

Statement I: In prokaryotes, the positively charged DNA is held with some negatively charged proteins in a region called nucleoid.

Statement II: In eukaryotes, the negatively charged DNA is wrapped around the positively charged histone octamer to form nucleosome.

In the light of the above statements, choose the correct answer from the options given below:

- (A) Both Statement I and Statement II are false.
- (B) Statement I is correct but Statement II is false.
- (C) Statement I is incorrect but Statement II is true.
- (D) Both Statement I and Statement II are true.

Ans. (C)

Sol. In prokaryotes, the negatively charged DNA is held with some positively charged proteins in a region termed as nucleoid.

In eukaryotes, the negatively charged DNA is wrapped around the positively charged histone octamer to form a structure called nucleosome.

List I List II

A. Ringworm I. Haemophilus influenzae

B. Filariasis II. Trichophyton

C. Malaria III. Wuchereria bancrofti

D. Pneumonia IV. Plasmodium vivax

Choose the correct answer from the options given below:

- (A) A-II, B-III, C-I, D-IV
- (B) A-III, B-II, C-I, D-IV
- (C) A-III, B-II, C-IV, D-I
- (D) A-II, B-III, C-IV, D-I

Ans. (D)

Sol. Option (4) is the correct answer because:

- (i) Ringworm is caused by Trichophyton.
- (ii) Filariasis is caused by Wuchereria bancrofti.
- (iii) Malaria is caused by Plasmodium species.
- (iv) Pneumonia is caused by Haemophilus influenzae.

185. Match List I with List II.

List I List II

(Interacting species) (Name of interaction)

A. A Leopard and a Lion in a forest/grassland I. Competition

B. A Cuckoo laying egg in a Crow's nest II. Brood parasitism

C. Fungi and root of a higher plant in Mycorrhizae III. Mutualism

D. A cattle egret and a Cattle in a field IV. Commensalism

Choose the correct answer from the options given below.

(A) A-I, B-II, C-IV, D-III (B) A-III, B-IV, C-I, D-II

(C) A-II, B-III, C-I, D-IV (D) A-I, B-II, C-III, D-IV

Ans. (D)

Sol. A leopard and a lion in a forest/grassland exemplify competition where both the species are competing for the same resources.

A cuckoo laying egg in a crow's nest is brood parasitism where cuckoo is the parasitic bird that lays its egg in the nest of crow (host bird).

Fungi and root of a higher plant in mycorrhizae exemplify mutualism where both the species are benefitted. The fungi help the plant in the absorption of essential nutrients from the soil while the plant in turn provides the fungi with energy yielding carbohydrates.

A cattle egret and a cattle in a field exemplify commensalism where one species benefits and the other remains unaffected.

The egrets always forage close to where cattle are grazing because the cattle, as they move, stir up and flush out insects from the vegetation that otherwise might be difficult for the egrets to find and catch.

SECTION-B

- **186.** Which of the following statements are correct?
 - A. Basophils are most abundant cells of the total WBCs
 - B. Basophils secrete histamine, serotonin and heparin
 - C. Basophils are involved in inflammatory response
 - D. Basophils have kidney shaped nucleus
 - E. Basophils are agranulocytes

Choose the correct answer from the options given below:

- (A) C and E only
- (B) B and C only
- (C) A and B only
- (D) D and E only
- Ans. (B)
- **Sol.** Option (B) is the answer because, basophils secrete histamine, serotonin, heparin etc. and are involved in inflammatory response.
 - Option (A) is not the answer because, basophils are granulocytes.
 - Option (C) is not the answer because, neutrophils are the most abundant cells (60–65%) of the total WBCs whereas basophils are least (0.5–1%) abundant of all WBCs.

Option (D) is not the answer because, monocytes have a kidney-shaped nucleus.

187. Match List I with List II.

List I	List II
L1St I	L1St II

- A. Mast cells

 I. Ciliated epithelium
- B. Inner surface of bronchiole
 C. Blood
 II. Areolar connective tissue
 III. Cuboidal epithelium
- D. Tubular parts of nephron IV. Specialised connective tissue

Choose the correct answer from the options give below:

- (A) A-II, B-III, C-I, D-IV (B) A-II, B-I, C-IV, D-III
- (C) A-III, B-IV, C-II, D-I (D) A-I, B-II, C-IV, D-III
- Ans. (B)
- **Sol.** Option (B) is the correct answer because,
 - Areolar connective tissue contains fibroblasts (cells that produce and secrete fibres), macrophages and mast cells.
 - Inner surface of bronchioles is lined by ciliated epithelium.
 - Blood is a specialised connective tissue.
 - Tubular parts of nephron are lined by cuboidal epithelium.
- **188.** Select the correct statements.
 - A. Tetrad formation is seen during Leptotene.
 - B. During Anaphase, the centromeres split and chromatids separate.
 - C. Terminalization takes place during Pachytene.
 - D. Nucleolus, Golgi complex and ER are reformed during Telophase.
 - E. Crossing over takes place between sister chromatids of homologous chromosome.

Choose the correct answer from the options given below:

(A) B and D only

(B) A, C and E only

(C) B and E only

(D) A and C only

Ans. (A)

- **Sol.** Tetrad formation is seen during zygotene stage
 - During Anaphase, the centromeres split and chromatids separate.
 - Terminalisation of chiasmata takes place during diakinesis.
 - Nucleolus, golgi complex and ER are reformed during telophase.
 - Crossing over takes place between non-sister chromatids of homologus chromosomes.

189. In cockroach, excretion is brought about by-

A. Phallic gland

C. Nephrocytes D. Fat body

E. Collaterial glands

Choose the correct answer from the options given below:

(A) A, B and E only

(B) B, C and D only

(C) B and D only

(D) A and E only

B. Urecose gland

Ans. (B

Sol. Option (B) is the answer because, In cockroach, excretion is brought about by Malpighian tubules, fat body, nephrocytes and urecose glands.

Urecose glands are present in male cockroach of some species. They synthesise uric acid.

Nephrocytes are large, colourless, ovoid, binucleate cells attached to the dorsal diaphragm in the body cavity. Fat body accumulates, produces and stores uric acid.

Phallic gland is the structure of male reproductive system of cockroach and it secretes the outer layer of spermatophore. Collaterial gland is the structure of female reproductive system of cockroach and it secretes the hard egg-case or ootheca around fertilised eggs.

190. Given below are two statements:

Statement I : During G0 phase of cell cycle, the cell is metabolically inactive.

Statement II: The centrosome undergoes duplication during S phase of interphase.

In the light of the above statements, choose the *most appropriate* answer from the options given below:

- (A) Both Statement I and Statement II are incorrect.
- (B) Statement I is correct but Statement II is incorrect.
- (C) Statement I is incorrect but Statement II is correct.
- (D) Both Statement I and Statement II are correct

Ans. (C)

Sol. Cells in the G0 stage remain metabolically active but no longer proliferate unless called on to do so depending on the requirement of the organism.

In animal cells, during the S-phase, DNA replication begins in the nucleus, and the centriole duplicates in the cytoplasm.

- **191.** Select the correct statements with reference to chordates.
 - A. Presence of a mid-dorsal, solid and double nerve cord.
 - B. Presence of closed circulatory system.
 - C. Presence of paired pharyngeal gill slits.
 - D. Presence of dorsal heart
 - E. Triploblastic pseudocoelomate animals.

Choose the correct answer from the options given below:

(A) B and C only

(B) B, D and E only

(C) C, D and E only

(D) A, C and D only

Ans. (A)

Sol. Option (1) is the correct answer because statements B and C only are correct. Option (2), (3) and (4) are not correct. The chordate characters are presence of closed circulatory system and presence of pharyngeal gill slits. Nerve cord is dorsal, hollow and single. Heart is ventral. They are riploblastic and coelomate.

> List I List II

A. Logistic growth I. Unlimited resource availability condition B. Exponential growth II. Limited resource availability condition

C. Expanding age pyramid III. The percent individuals of pre-

reproductive age is largest followed by reproductive and

post reproductive age groups

IV. The percent individuals of pre-D. Stable age pyramid

reproductives and reproductive age group are same

Choose the correct answer from the options given below:

(A) A-II, B-III, C-I, D-IV

(B) A-II, B-IV, C-I, D-III

(C) A-II, B-IV, C-III, D-I

(D) A-II, B-I, C-III, D-IV

(D) Ans.

Sol. Logistic growth occurs when there is **limited** resource availability condition.

Exponential growth occurs when there is unlimited resource availability condition.

Expanding age pyramid reflects growing population where the percent individuals of prereproductive age is largest followed by reproductive and post-reproductive age groups. Stable age pyramid shows stable population where the percent individuals of pre-reproductive

and reproductive age group are same.

- 193. Which one of the following is the sequence on corresponding coding strand, if the sequence on mRNA formed is as follows 5'AUCGAUCGAUCGAUCGAUCGAUCG AUCG 3'?
 - (A) 3' UAGCUAGCUAGCUAGCUAGC 5'
 - (B) 5' ATCGATCGATCGATCGATCGATCG3'
 - (C) 3' ATCGATCGATCGATCGATCGATCG5'
 - (D) 5' UAGCUAGCUAGCUAGCUAGCUAGC 3'

Ans.

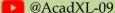
Sol. The sequence of coding strand is same as RNA except thymine at the place of uracil.

Template strand → 3'-TAGCTAGCTAGCTAGCTAGCTAGC-5'

Coding strand → 5'-ATCGATCGATCG ATCGATCGATCG-3'

↓ Transcription

mRNA → 5' AUCGAUCGAUCGAUCGAUCGAUCG 3'


- Which of the following is characteristic feature of cockroach regarding sexual dimorphism? 194.
 - (A) Presence of anal styles
 - (B) Presence of sclerites
 - (C) Presence of anal cerci
 - (D) Dark brown body colour and anal cerci

(A) Ans.

Sol. Option (1) is the correct answer because anal styles are present in male cockroaches and absent in female cockroaches.

Option (2), (3) and (4) are not the correct answers because sclerites, anal cerci and dark brown body colour are common features of both male and female cockroaches.

65

- 195. Which of the following statements are correct regarding skeletal muscle?
 - A. Muscle bundles are held together by collagenous connective tissue layer called fascicle.
 - B. Sarcoplasmic reticulum of muscle fibre is a store house of calcium ions.
 - C. Striated appearance of skeletal muscle fibre is due to distribution pattern of actin and myosin proteins.
 - D. M line is considered as functional unit of contraction called sarcomere.

Choose the *most appropriate* answer from the options given below:

- (A) B and C only
- (B) A, C and D only
- (C) C and D only
- (D) A, B and C only
- Ans. (A)
- Sol. Option (A) is the correct answer because statements B and C are only correct statements while A and D are incorrect statements.

Muscle bundles are held together by collagenous connective tissue layer called fascia. Muscle bundles are called fascicles. The portion of the myofibril between two successive 'Z' lines is considered as functional unit of contraction called sarcomere.

- 196. The unique mammalian characteristics are:
 - (A) hairs, pinna and mammary glands
 - (B) hairs, pinna and indirect development
 - (C) pinna, monocondylic skull and mammary glands
 - (D) hairs, tympanic membrane and mammary glands
- Ans. (A)
- Sol. Option (A) is correct answer because presence of hairs, pinna and mammary glands are unique features of mammals.

Options (B), (C) and (D) are not correct because, monocondylic skull is present in reptiles and aves whereas mammals have dicondylic skull. Tympanic membrane is present in amphibians also, so it is not considered as unique feature.

Indirect development is not seen in mammals.

- 197. Which one of the following is NOT an advantage of inbreeding?
 - (A) It exposes harmful recessive genes but are eliminated by selection.
 - (B) Elimination of less desirable genes and accumulation of superior genes takes place due to it.
 - (C) It decreases the productivity of inbred population, after continuous inbreeding.
 - (D) It decreases homozygosity.
- Ans. (C)
- Sol. Option (C) is the correct answer because decreasing the productivity of inbred population is not an advantage of inbreeding.
 - Options (A) and (B) are not the answers because they are the advantages of inbreeding.

Contact@acadxl.com

Option (D) is an incorrect statement.

- 198. The parts of human brain that helps in regulation of sexual behaviour, expression of excitement, pleasure, rage, fear etc. are:
 - (A) Corpora quadrigemina and hippocampus
 - (B) Brain stem and epithalamus
 - (C) Corpus callosum and thalamus
 - (D) Limbic system and hypothalamus
- (D) Ans.
- Sol. Option (4) is the correct answer because limbic system along with hypothalamus regulate the sexual behaviour, expression of excitement, pleasure, rage, fear, etc.

Option (1), (2) and (3) are not correct because corpora quadrigemina is a part of the midbrain and consists of four round swellings. Corpus callosum is a tract of nerve fibres that connects right and left cerebral hemispheres. Thalamus is a major coordinating centre in the forebrain for sensory and motor signalling. Midbrain, pons and medulla oblongata together form the brain stem.

- 199. Which of the following statements are correct?
 - A. An excessive loss of body fluid from the body switches off osmoreceptors.
 - B. ADH facilitates water reabsorption to prevent diuresis.
 - C. ANF causes vasodilation.
 - D. ADH causes increase in blood pressure.
 - E. ADH is responsible for decrease in GFR.

Choose the correct answer from the options given below:

(A) B, C and D only

(B) A, B and E only

(C) C, D and E only

(D) A and B only

- Ans. (A)
- Sol. Option (A) is the correct answer because statements B, C and D are true statements. ADH facilitates water reabsorption from DCT of nephron to prevent diuresis, which causes increase in blood pressure.

ANF which is secreted by the heart is a vasodilator.

Options (B), (C) and (D) are not correct because statements A and E are false. Excessive loss of body fluid from the body switches on the osmoreceptors.

- 200. Which of the following are NOT under the control of thyroid hormone?
 - A. Maintenance of water and electrolyte balance
 - B. Regulation of basal metabolic rate
 - C. Normal rhythm of sleep-wake cycle
 - D. Development of immune system
 - E. Support the process of RBCs formation

Choose the correct answer from the options given below:

(A) B and C only

(B) C and D only

(C) D and E only

(D) A and D only

Ans. **(B)**

Sol. Option (B) is the correct answer because thyroid hormones play an important role in the regulation of basal metabolic rate, maintenance of water and electrolyte balance and support the process of RBCs formation, whereas this hormone is not involved in regulating normal rhythm of sleep-wake cycle and development of immune system.

